Continuous Integration with Jenkins, Artifactory and Spring Cloud Contract

Consumer Driven Contract (CDC) testing is one of the method that allows you to verify integration between applications within your system. The number of such interactions may be really large especially if you maintain microservices-based architecture. Assuming that every microservice is developed by different teams or sometimes even different vendors, it is important to automate the whole testing process. As usual, we can use Jenkins server for running contract tests within our Continuous Integration (CI) process.

The sample scenario has been visualized on the picture below. We have one application (person-service) that exposes API leveraged by three different applications. Each application is implementing by a different development team. Consequently, every application is stored in the separated Git repository and has dedicated pipeline in Jenkins for building, testing and deploying.

contracts-3 (1)

The source code of sample applications is available on GitHub in the repository sample-spring-cloud-contract-ci (https://github.com/piomin/sample-spring-cloud-contract-ci.git). I placed all the sample microservices in the single Git repository only for our demo simplification. We will still treat them as a separated microservices, developed and built independently.

In this article I used Spring Cloud Contract for CDC implementation. It is the first choice solution for JVM applications written in Spring Boot. Contracts can be defined using Groovy or YAML notation. After building on the producer side Spring Cloud Contract generate special JAR file with stubs suffix, that contains all defined contracts and JSON mappings. Such a JAR file can be build on Jenkins and then published on Artifactory. Contract consumer also use the same Artifactory server, so they can use the latest version of stubs file. Because every application expects different response from person-service, we have to define three different contracts between person-service and a target consumer.

contracts-1

Let’s analyze the sample scenario. Assuming we have performed some changes in the API exposed by person-service and we have modified contracts on the producer side, we would like to publish them on shared server. First, we need to verify contracts against producer (1), and in case of success publish artifact with stubs to Artifactory (2). All the pipelines defined for applications that use this contract are able to trigger the build on a new version of JAR file with stubs (3). Then, the newest version contract is verifying against consumer (4). If contract testing fails, pipeline is able to notify the responsible team about this failure.

contracts-2

1. Pre-requirements

Before implementing and running any sample we need to prepare our environment. We need to launch Jenkins and Artifactory servers on the local machine. The most suitable way for this is through a Docker containers. Here are the commands required for run these containers.

$ docker run --name artifactory -d -p 8081:8081 docker.bintray.io/jfrog/artifactory-oss:latest
$ docker run --name jenkins -d -p 8080:8080 -p 50000:50000 jenkins/jenkins:lts

I don’t know if you are familiar with such tools like Artifactory and Jenkins. But after starting them we need to configure some things. First you need to initialize Maven repositories for Artifactory. You will be prompt for that just after a first launch. It also automatically add one remote repository: JCenter Bintray (https://bintray.com/bintray/jcenter), which is enough for our build. Jenkins also comes with default set of plugins, which you can install just after first launch (Install suggested plugins). For this demo, you will also have to install plugin for integration with Artifactory (https://wiki.jenkins.io/display/JENKINS/Artifactory+Plugin). If you need more details about Jenkins and Artifactory configuration you can refer to my older article How to setup Continuous Delivery environment.

2. Building contracts

We are beginning contract definition from the producer side application. Producer exposes only one GET /persons/{id} method that returns Person object. Here are the fields contained by Person class.

public class Person {

	private Integer id;
	private String firstName;
	private String lastName;
	@JsonFormat(pattern = "yyyy-MM-dd")
	private Date birthDate;
	private Gender gender;
	private Contact contact;
	private Address address;
	private String accountNo;

	// ...
}

The following picture illustrates, which fields of Person object are used by consumers. As you see, some of the fields are shared between consumers, while some other are required only by single consuming application.

contracts-4

Now we can take a look on contract definition between person-service and bank-service.

import org.springframework.cloud.contract.spec.Contract

Contract.make {
	request {
		method 'GET'
		urlPath('/persons/1')
	}
	response {
		status OK()
		body([
			id: 1,
			firstName: 'Piotr',
			lastName: 'Minkowski',
			gender: $(regex('(MALE|FEMALE)')),
			contact: ([
				email: $(regex(email())),
				phoneNo: $(regex('[0-9]{9}$'))
			])
		])
		headers {
			contentType(applicationJson())
		}
	}
}

For comparison, here’s definition of contract between person-service and letter-service.

import org.springframework.cloud.contract.spec.Contract

Contract.make {
	request {
		method 'GET'
		urlPath('/persons/1')
	}
	response {
		status OK()
		body([
			id: 1,
			firstName: 'Piotr',
			lastName: 'Minkowski',
			address: ([
				city: $(regex(alphaNumeric())),
				country: $(regex(alphaNumeric())),
				postalCode: $(regex('[0-9]{2}-[0-9]{3}')),
				houseNo: $(regex(positiveInt())),
				street: $(regex(nonEmpty()))
			])
		])
		headers {
			contentType(applicationJson())
		}
	}
}

3. Implementing tests on the producer side

Ok, we have three different contracts assigned to the single endpoint exposed by person-service. We need to publish them in such a way to that they are easily available for consumers. In that case Spring Cloud Contract comes with a handy solution. We may define contracts with different response for the same request, and than choose the appropriate definition on the consumer side. All those contract definitions will be published within the same JAR file. Because we have three consumers we define three different contracts placed in directories bank-consumer, contact-consumer and letter-consumer.

contracts-5

All the contracts will use a single base test class. To achieve it we need to provide a fully qualified name of that class for Spring Cloud Contract Verifier plugin in pom.xml.

<plugin>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-contract-maven-plugin</artifactId>
	<extensions>true</extensions>
	<configuration>
		<baseClassForTests>pl.piomin.services.person.BasePersonContractTest</baseClassForTests>
	</configuration>
</plugin>

Here’s the full definition of base class for our contract tests. We will mock the repository bean with the answer matching to the rules created inside contract files.

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.DEFINED_PORT)
public abstract class BasePersonContractTest {

	@Autowired
	WebApplicationContext context;
	@MockBean
	PersonRepository repository;
	
	@Before
	public void setup() {
		RestAssuredMockMvc.webAppContextSetup(this.context);
		PersonBuilder builder = new PersonBuilder()
			.withId(1)
			.withFirstName("Piotr")
			.withLastName("Minkowski")
			.withBirthDate(new Date())
			.withAccountNo("1234567890")
			.withGender(Gender.MALE)
			.withPhoneNo("500070935")
			.withCity("Warsaw")
			.withCountry("Poland")
			.withHouseNo(200)
			.withStreet("Al. Jerozolimskie")
			.withEmail("piotr.minkowski@gmail.com")
			.withPostalCode("02-660");
		when(repository.findById(1)).thenReturn(builder.build());
	}
	
}

Spring Cloud Contract Maven plugin visible above is responsible for generating stubs from contract definitions. It is executed during Maven build after running mvn clean install command. The build is performed on Jenkins CI. Jenkins pipeline is responsible for updating remote Git repository, build binaries from source code, running automated tests and finally publishing JAR file containing stubs on a remote artifact repository – Artifactory. Here’s Jenkins pipeline created for the contract producer side (person-service).

node {
  withMaven(maven:'M3') {
    stage('Checkout') {
      git url: 'https://github.com/piomin/sample-spring-cloud-contract-ci.git', credentialsId: 'piomin-github', branch: 'master'
    }
    stage('Publish') {
      def server = Artifactory.server 'artifactory'
      def rtMaven = Artifactory.newMavenBuild()
      rtMaven.tool = 'M3'
      rtMaven.resolver server: server, releaseRepo: 'libs-release', snapshotRepo: 'libs-snapshot'
      rtMaven.deployer server: server, releaseRepo: 'libs-release-local', snapshotRepo: 'libs-snapshot-local'
      rtMaven.deployer.artifactDeploymentPatterns.addInclude("*stubs*")
      def buildInfo = rtMaven.run pom: 'person-service/pom.xml', goals: 'clean install'
      rtMaven.deployer.deployArtifacts buildInfo
      server.publishBuildInfo buildInfo
    }
  }
}

We also need to include dependency spring-cloud-starter-contract-verifier to the producer app to enable Spring Cloud Contract Verifier.

<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-starter-contract-verifier</artifactId>
	<scope>test</scope>
</dependency>

4. Implementing tests on the consumer side

To enable Spring Cloud Contract on the consumer side we need to include artifact spring-cloud-starter-contract-stub-runner to the project dependencies.

<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-starter-contract-stub-runner</artifactId>
	<scope>test</scope>
</dependency>

Then, the only thing left is to build JUnit test, which verifies our contract by calling it through OpenFeign client. The configuration of that test is provided inside annotation @AutoConfigureStubRunner. We select the latest version of person-service stubs artifact by setting + in the version section of ids parameter. Because, we have multiple contracts defined inside person-service we need to choose the right for current service by setting consumer-name parameter. All the contract definitions are downloaded from Artifactory server, so we set stubsMode parameter to REMOTE. The address of Artifactory server has to be set using repositoryRoot property.

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.NONE)
@AutoConfigureStubRunner(ids = {"pl.piomin.services:person-service:+:stubs:8090"}, consumerName = "letter-consumer",  stubsPerConsumer = true, stubsMode = StubsMode.REMOTE, repositoryRoot = "http://192.168.99.100:8081/artifactory/libs-snapshot-local")
@DirtiesContext
public class PersonConsumerContractTest {

	@Autowired
	private PersonClient personClient;
	
	@Test
	public void verifyPerson() {
		Person p = personClient.findPersonById(1);
		Assert.assertNotNull(p);
		Assert.assertEquals(1, p.getId().intValue());
		Assert.assertNotNull(p.getFirstName());
		Assert.assertNotNull(p.getLastName());
		Assert.assertNotNull(p.getAddress());
		Assert.assertNotNull(p.getAddress().getCity());
		Assert.assertNotNull(p.getAddress().getCountry());
		Assert.assertNotNull(p.getAddress().getPostalCode());
		Assert.assertNotNull(p.getAddress().getStreet());
		Assert.assertNotEquals(0, p.getAddress().getHouseNo());
	}
	
}

Here’s Feign client implementation responsible for calling endpoint exposed by person-service

@FeignClient("person-service")
public interface PersonClient {

	@GetMapping("/persons/{id}")
	Person findPersonById(@PathVariable("id") Integer id);
	
}

5. Setup of Continuous Integration process

Ok, we have already defined all the contracts required for our exercise. We have also build a pipeline responsible for building and publishing stubs with contracts on the producer side (person-service). It always publish the newest version of stubs generated from source code. Now, our goal is to launch pipelines defined for three consumer applications, each time when new stubs would be published to Artifactory server by producer pipeline.
The best solution for that would be to trigger a Jenkins build when you deploy an artifact. To achieve it we use Jenkins plugin called URLTrigger, that can be configured to watch for changes on a certain URL, in that case REST API endpoint exposed by Artifactory for selected repository path.
After installing URLTrigger plugin we have to enable it for all consumer pipelines. You can configure it to watch for changes in the returned JSON file from the Artifactory File List REST API, that is accessed via the following URI: http://192.168.99.100:8081/artifactory/api/storage/%5BPATH_TO_FOLDER_OR_REPO%5D/. The file maven-metadata.xml will change every time you deploy a new version of application to Artifactory. We can monitor the change of response’s content between the last two polls. The last field that has to be filled is Schedule. If you set it to * * * * * it will poll for a change every minute.

contracts-6

Our three pipelines for consumer applications are ready. The first run was finished with success.

contracts-7

If you have already build person-service application and publish stubs to Artifactory you will see the following structure in libs-snapshot-local repository. I have deployed three different versions of API exposed by person-service. Each time I publish new version of contract all the dependent pipelines are triggered to verify it.

contracts-8

The JAR file with contracts is published under classifier stubs.

contracts-9

Spring Cloud Contract Stub Runner tries to find the latest version of contracts.

2018-07-04 11:46:53.273  INFO 4185 --- [           main] o.s.c.c.stubrunner.AetherStubDownloader  : Desired version is [+] - will try to resolve the latest version
2018-07-04 11:46:54.752  INFO 4185 --- [           main] o.s.c.c.stubrunner.AetherStubDownloader  : Resolved version is [1.3-SNAPSHOT]
2018-07-04 11:46:54.823  INFO 4185 --- [           main] o.s.c.c.stubrunner.AetherStubDownloader  : Resolved artifact [pl.piomin.services:person-service:jar:stubs:1.3-SNAPSHOT] to /var/jenkins_home/.m2/repository/pl/piomin/services/person-service/1.3-SNAPSHOT/person-service-1.3-SNAPSHOT-stubs.jar

6. Testing change in contract

Ok, we have already prepared contracts and configured our CI environment. Now, let’s perform change in the API exposed by person-service. We will just change the name of one field: accountNo to accountNumber.

contracts-12

This changes requires a change in contract definition created on the producer side. If you modify the field name there person-service will build successfully and new version of contract will be published to Artifactory. Because all other pipelines listens for changes in the latest version of JAR files with stubs, the build will be started automatically. Microservices letter-service and contact-service do not use field accountNo, so their pipelines will not fail. Only bank-service pipeline report error in contract as shown on the picture below.

contracts-10

Now, if you were notified about failed verification of the newest contract version between person-service and bank-service, you can perform required change on the consumer side.

contracts-11

Advertisements

Introduction to Blockchain with Java using Ethereum, web3j and Spring Boot

Blockchain is one of the buzzwords in IT world during some last months. This term is related to cryptocurrencies, and was created together with Bitcoins. It is decentralized, immutable data structure divided into blocks, which are linked and secured using cryptographic algorithms. Every single block in this structure typically contains a cryptographic hash of the previous block, a timestamp, and transaction data. Blockchain is managed by peer-to-peer network, and during inter-node communication every new block is validated before adding. This is short portion of theory about blockchain. In a nutshell, this is a technology which allows us to managed transactions between two parties in a decentralized way. Now, the question is how we can implement it in our system.
Here comes Ethereum. It is a decentralized platform created by Vitarik Buterin that provides scripting language for a development of applications. It is based on ideas from Bitcoin, and is driven by the new cryptocurrency called Ether. Today, Ether is the second largest cryptocurrency after Bitcoin. The heart of Ethereum technology is EVM (Ethereum Virtual Machine), which can be treated as something similar to JVM, but using a network of fully decentralized nodes. To implement transactions based Ethereum in Java world we use web3j library. This is a lightweight, reactive, type safe Java and Android library for integrating with nodes on Ethereum blockchains. More details can be found on its website https://web3j.io.

1. Running Ethereum locally

Although there are many articles on the Web about blockchain and ethereum it is not easy to find a solution describing how to run ready-for-use instance of Ethereum on the local machine. It is worth to mention that generally there are two most popular Ethereum clients we can use: Geth and Parity. It turns out we can easily run Geth node locally using Docker container. By default it connects the node to the Ethereum main network. Alternatively, you can connect it to test network or Rinkeby network. But the best option for beginning is just to run it in development mode by setting --dev parameter on Docker container running command.
Here’s the command that starts Docker container in development mode and exposes Ethereum RPC API on port 8545.

$ docker run -d --name ethereum -p 8545:8545 -p 30303:30303 ethereum/client-go --rpc --rpcaddr "0.0.0.0" --rpcapi="db,eth,net,web3,personal" --rpccorsdomain "*" --dev

The one really good message when running that container in development mode is that you have plenty of Ethers on your default, test account. In that case, you don’t have to mine any Ethers to be able to start tests. Great! Now, let’s create some other test accounts and also check out some things. To achieve it we need to run Geth’s interactive JavaScript console inside Docker container.

$ docker exec -it ethereum geth attach ipc:/tmp/geth.ipc

2. Managing Ethereum node using JavaScript console

After running JavaScript console you can easily display default account (coinbase), the list of all available accounts and their balances. Here’s the screen illustrating results for my Ethereum node.
blockchain-1
Now, we have to create some test accounts. We can do it by calling personal.newAccount(password) function. After creating required accounts, you can perform some test transactions using JavaScript console, and transfer some funds from base account to the newly created accounts. Here are the commands used for creating accounts and executing transactions.
blockchain-2

3. System architecture

The architecture of our sample system is very simple. I don’t want to complicate anything, but just show you how to send transaction to Geth node and receive notifications. While transaction-service sends new transaction to Ethereum node, bonus-service observe node and listening for incoming transactions. Then it send bonus to the sender’s account once per 10 transactions received from his account. Here’s the diagram that illustrates an architecture of our sample system.
blockchain-arch

4. Enable Web3j for Spring Boot app

I think that now we have clarity what exactly we want to do. So, let’s proceed to the implementation. First, we should include all required dependencies in order to be able to use web3j library inside Spring Boot application. Fortunately, there is a starter that can be included.

<dependency>
	<groupId>org.web3j</groupId>
	<artifactId>web3j-spring-boot-starter</artifactId>
	<version>1.6.0</version>
</dependency>

Because we are running Ethereum Geth client on Docker container we need to change auto-configured client’s address for web3j.

spring:
  application:
    name: transaction-service
server:
  port: ${PORT:8090}
web3j:
  client-address: http://192.168.99.100:8545

5. Building applications

If we included web3j starter to the project dependencies all you need is to autowire Web3j bean. Web3j is responsible for sending transaction to Geth client node. It receives response with transaction hash if it has been accepted by the node or error object if it has been rejected. While creating transaction object it is important to set gas limit to minimum 21000. If you sent lower value, you will probably receive error Error: intrinsic gas too low.

@Service
public class BlockchainService {

    private static final Logger LOGGER = LoggerFactory.getLogger(BlockchainService.class);

    @Autowired
    Web3j web3j;

    public BlockchainTransaction process(BlockchainTransaction trx) throws IOException {
        EthAccounts accounts = web3j.ethAccounts().send();
        EthGetTransactionCount transactionCount = web3j.ethGetTransactionCount(accounts.getAccounts().get(trx.getFromId()), DefaultBlockParameterName.LATEST).send();
        Transaction transaction = Transaction.createEtherTransaction(accounts.getAccounts().get(trx.getFromId()), transactionCount.getTransactionCount(), BigInteger.valueOf(trx.getValue()), BigInteger.valueOf(21_000), accounts.getAccounts().get(trx.getToId()),BigInteger.valueOf(trx.getValue()));
        EthSendTransaction response = web3j.ethSendTransaction(transaction).send();
        if (response.getError() != null) {
            trx.setAccepted(false);
            return trx;
        }
        trx.setAccepted(true);
        String txHash = response.getTransactionHash();
        LOGGER.info("Tx hash: {}", txHash);
        trx.setId(txHash);
        EthGetTransactionReceipt receipt = web3j.ethGetTransactionReceipt(txHash).send();
        if (receipt.getTransactionReceipt().isPresent()) {
            LOGGER.info("Tx receipt: {}", receipt.getTransactionReceipt().get().getCumulativeGasUsed().intValue());
        }
        return trx;
    }

}

The @Service bean visible above is invoked by the controller. The implementation of POST method takes BlockchainTransaction object as parameter. You can send there sender id, receiver id, and transaction amount. Sender and receiver ids are equivalent to index in query eth.account[index].

@RestController
public class BlockchainController {

    @Autowired
    BlockchainService service;

    @PostMapping("/transaction")
    public BlockchainTransaction execute(@RequestBody BlockchainTransaction transaction) throws NoSuchAlgorithmException, NoSuchProviderException, InvalidAlgorithmParameterException, CipherException, IOException {
        return service.process(transaction);
    }

}

You can send a test transaction by calling POST method using the following command.

  
$ curl --header "Content-Type: application/json" --request POST --data '{"fromId":2,"toId":1,"value":3}' http://localhost:8090/transaction

Before sending any transactions you should also unlock sender account.
blockchain-3

Application bonus-service listens for transactions processed by Ethereum node. It subscribes for notifications from Web3j library by calling web3j.transactionObservable().subscribe(...) method. It returns the amount of received transaction to the sender’s account once per 10 transactions sent from that address. Here’s the implementation of observable method inside application bonus-service.

@Autowired
Web3j web3j;

@PostConstruct
public void listen() {
	Subscription subscription = web3j.transactionObservable().subscribe(tx -> {
		LOGGER.info("New tx: id={}, block={}, from={}, to={}, value={}", tx.getHash(), tx.getBlockHash(), tx.getFrom(), tx.getTo(), tx.getValue().intValue());
		try {
			EthCoinbase coinbase = web3j.ethCoinbase().send();
			EthGetTransactionCount transactionCount = web3j.ethGetTransactionCount(tx.getFrom(), DefaultBlockParameterName.LATEST).send();
			LOGGER.info("Tx count: {}", transactionCount.getTransactionCount().intValue());
			if (transactionCount.getTransactionCount().intValue() % 10 == 0) {
				EthGetTransactionCount tc = web3j.ethGetTransactionCount(coinbase.getAddress(), DefaultBlockParameterName.LATEST).send();
				Transaction transaction = Transaction.createEtherTransaction(coinbase.getAddress(), tc.getTransactionCount(), tx.getValue(), BigInteger.valueOf(21_000), tx.getFrom(), tx.getValue());
				web3j.ethSendTransaction(transaction).send();
			}
		} catch (IOException e) {
			LOGGER.error("Error getting transactions", e);
		}
	});
	LOGGER.info("Subscribed");
}

Conclusion

Blockchain and cryptocurrencies are not the easy topics to start. Ethereum simplifies development of applications that use blockchain, by providing a complete, scripting language. Using web3j library together with Spring Boot and Docker image of Ethereum Geth client allows to quickly start local development of solution implementing blockchain technology. IF you would like to try it locally just clone my repository available on GitHub https://github.com/piomin/sample-spring-blockchain.git

Building and testing message-driven microservices using Spring Cloud Stream

Spring Boot and Spring Cloud give you a great opportunity to build microservices fast using different styles of communication. You can create synchronous REST microservices based on Spring Cloud Netflix libraries as shown in one of my previous articles Quick Guide to Microservices with Spring Boot 2.0, Eureka and Spring Cloud. You can create asynchronous, reactive microservices deployed on Netty with Spring WebFlux project and combine it succesfully with some Spring Cloud libraries as shown in my article Reactive Microservices with Spring WebFlux and Spring Cloud. And finally, you may implement message-driven microservices based on publish/subscribe model using Spring Cloud Stream and message broker like Apache Kafka or RabbitMQ. The last of listed approaches to building microservices is the main subject of this article. I’m going to show you how to effectively build, scale, run and test messaging microservices basing on RabbitMQ broker.

Architecture

For the purpose of demonstrating Spring Cloud Stream features we will design a sample system which uses publish/subscribe model for inter-service communication. We have three microservices: order-service, product-service and account-service. Application order-service exposes HTTP endpoint that is responsible for processing orders sent to our system. All the incoming orders are processed asynchronously – order-service prepare and send message to RabbitMQ exchange and then respond to the calling client that the request has been accepted for processing. Applications account-service and product-service are listening for the order messages incoming to the exchange. Microservice account-service is responsible for checking if there are sufficient funds on customer’s account for order realization and then withdrawing cash from this account. Microservice product-service checks if there is sufficient amount of products in the store, and changes the number of available products after processing order. Both account-service and product-service send asynchronous response through RabbitMQ exchange (this time it is one-to-one communication using direct exchange) with a status of operation. Microservice order-service after receiving response messages sets the appropriate status of the order and exposes it through REST endpoint GET /order/{id} to the external client.

If you feel that the description of our sample system is a little incomprehensible, here’s the diagram with architecture for clarification.

stream-1

Enabling Spring Cloud Stream

The recommended way to include Spring Cloud Stream in the project is with a dependency management system. Spring Cloud Stream has an independent release trains management in relation to the whole Spring Cloud framework. However, if we have declared spring-cloud-dependencies in the Elmhurst.RELEASE version inside the dependencyManagement
section, we wouldn’t have to declare anything else in pom.xml. If you prefer to use only the Spring Cloud Stream project, you should define the following section.

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>org.springframework.cloud</groupId>
      <artifactId>spring-cloud-stream-dependencies</artifactId>
      <version>Elmhurst.RELEASE</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

The next step is to add spring-cloud-stream artifact to the project dependencies. I also recommend you include at least the spring-cloud-sleuth library to provide sending messaging with the same traceId as the source request incoming to order-service.

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-stream</artifactId>
</dependency>
<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-sleuth</artifactId>
</dependency>

Spring Cloud Stream programming model

To enable connectivity to a message broker for your application, annotate the main class with @EnableBinding. The @EnableBinding annotation takes one or more interfaces as parameters. You may choose between three interfaces provided by Spring Cloud Stream:

  • Sink: This is used for marking a service that receives messages from the inbound channel.
  • Source: This is used for sending messages to the outbound channel.
  • Processor: This can be used in case you need both an inbound channel and an outbound channel, as it extends the Source and Sink interfaces. Because order-service sends messages, as well as receives them, its main class has been annotated with @EnableBinding(Processor.class).

Here’s the main class of order-service that enables Spring Cloud Stream binding.

@SpringBootApplication
@EnableBinding(Processor.class)
public class OrderApplication {
  public static void main(String[] args) {
    new SpringApplicationBuilder(OrderApplication.class).web(true).run(args);
  }
}

Adding message broker

In Spring Cloud Stream nomenclature the implementation responsible for integration with specific message broker is called binder. By default, Spring Cloud Stream provides binder implementations for Kafka and RabbitMQ. It is able to automatically detect and use a binder found on the classpath. Any middleware-specific settings can be overridden through external configuration properties in the form supported by Spring Boot, such as application arguments, environment variables, or just the application.yml file. To include support for RabbitMQ, which used it this article as a message broker, you should add the following dependency to the project.

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

Now, our applications need to connected with one, shared instance of RabbitMQ broker. That’s why I run Docker image with RabbitMQ exposed outside on default 5672 port. It also launches web dashboard available under address http://192.168.99.100:15672.

$ docker run -d --name rabbit -p 15672:15672 -p 5672:5672 rabbitmq:management

We need to override default address of RabbitMQ for every Spring Boot application by settings property spring.rabbitmq.host to Docker machine IP 192.168.99.100.

spring:
  rabbitmq:
    host: 192.168.99.100
    port: 5672

Implementing message-driven microservices

Spring Cloud Stream is built on top of Spring Integration project. Spring Integration extends the Spring programming model to support the well-known Enterprise Integration Patterns (EIP). EIP defines a number of components that are typically used for orchestration in distributed systems. You have probably heard about patterns such as message channels, routers, aggregators, or endpoints. Let’s proceed to the implementation.
We begin from order-service, that is responsible for accepting orders, publishing them on shared topic and then collecting asynchronous responses from downstream services. Here’s the @Service, which builds message and publishes it to the remote topic using Source bean.

@Service
public class OrderSender {
  @Autowired
  private Source source;

  public boolean send(Order order) {
    return this.source.output().send(MessageBuilder.withPayload(order).build());
  }
}

That @Service is called by the controller, which exposes the HTTP endpoints for submitting new orders and getting order with status by id.

@RestController
public class OrderController {

	private static final Logger LOGGER = LoggerFactory.getLogger(OrderController.class);

	private ObjectMapper mapper = new ObjectMapper();

	@Autowired
	OrderRepository repository;
	@Autowired
	OrderSender sender;	

	@PostMapping
	public Order process(@RequestBody Order order) throws JsonProcessingException {
		Order o = repository.add(order);
		LOGGER.info("Order saved: {}", mapper.writeValueAsString(order));
		boolean isSent = sender.send(o);
		LOGGER.info("Order sent: {}", mapper.writeValueAsString(Collections.singletonMap("isSent", isSent)));
		return o;
	}

	@GetMapping("/{id}")
	public Order findById(@PathVariable("id") Long id) {
		return repository.findById(id);
	}

}

Now, let’s take a closer look on consumer side. The message sent by OrderSender bean from order-service is received by account-service and product-service. To receive the message from topic exchange, we just have to annotate the method that takes the Order object as a parameter with @StreamListener. We also have to define target channel for listener – in that case it is Processor.INPUT.

@SpringBootApplication
@EnableBinding(Processor.class)
public class OrderApplication {

	private static final Logger LOGGER = LoggerFactory.getLogger(OrderApplication.class);

	@Autowired
	OrderService service;

	public static void main(String[] args) {
		new SpringApplicationBuilder(OrderApplication.class).web(true).run(args);
	}

	@StreamListener(Processor.INPUT)
	public void receiveOrder(Order order) throws JsonProcessingException {
		LOGGER.info("Order received: {}", mapper.writeValueAsString(order));
		service.process(order);
	}

}

Received order is then processed by AccountService bean. Order may be accepted or rejected by account-service dependending on sufficient funds on customer’s account for order’s realization. The response with acceptance status is sent back to order-service via output channel invoked by the OrderSender bean.

@Service
public class AccountService {

	private static final Logger LOGGER = LoggerFactory.getLogger(AccountService.class);

	private ObjectMapper mapper = new ObjectMapper();

	@Autowired
	AccountRepository accountRepository;
	@Autowired
	OrderSender orderSender;

	public void process(final Order order) throws JsonProcessingException {
		LOGGER.info("Order processed: {}", mapper.writeValueAsString(order));
		List accounts =  accountRepository.findByCustomer(order.getCustomerId());
		Account account = accounts.get(0);
		LOGGER.info("Account found: {}", mapper.writeValueAsString(account));
		if (order.getPrice() <= account.getBalance()) {
			order.setStatus(OrderStatus.ACCEPTED);
			account.setBalance(account.getBalance() - order.getPrice());
		} else {
			order.setStatus(OrderStatus.REJECTED);
		}
		orderSender.send(order);
		LOGGER.info("Order response sent: {}", mapper.writeValueAsString(order));
	}

}

The last step is configuration. It is provided inside application.yml file. We have to properly define destinations for channels. While order-service is assigning orders-out destination to output channel, and orders-in destination to input channel, account-service and product-service do the opposite. It is logical, because message sent by order-service via its output destination is received by consuming services via their input destinations. But it is still the same destination on shared broker’s exchange. Here are configuration settings of order-service.

spring:
  cloud:
    stream:
      bindings:
        output:
          destination: orders-out
        input:
          destination: orders-in
      rabbit:
        bindings:
          input:
            consumer:
              exchangeType: direct

Here’s configuration provided for account-service and product-service.

spring:
  cloud:
    stream:
      bindings:
        output:
          destination: orders-in
        input:
          destination: orders-out
      rabbit:
        bindings:
          output:
            producer:
              exchangeType: direct
              routingKeyExpression: '"#"'

Finally, you can run our sample microservice. For now, we just need to run a single instance of each microservice. You can easily generate some test requests by running JUnit test class OrderControllerTest provided in my source code repository inside module order-service. This case is simple. In the next we will study more advanced sample with multiple running instances of consuming services.

Scaling up

To scale up our Spring Cloud Stream applications we just need to launch additional instances of each microservice. They will still listen for the incoming messages on the same topic exchange as the currently running instances. After adding one instance of account-service and product-service we may send a test order. The result of that test won’t be satisfactory for us… Why? A single order is received by all the running instances of every microservice. This is exactly how topic exchanges works – the message sent to topic is received by all consumers, which are listening on that topic. Fortunately, Spring Cloud Stream is able to solve that problem by providing solution called consumer group. It is responsible for guarantee that only one of the instances is expected to handle a given message, if they are placed in a competing consumer relationship. The transformation to consumer group mechanism when running multiple instances of the service has been visualized on the following figure.

stream-2

Configuration of a consumer group mechanism is not very difficult. We just have to set group parameter with name of the group for given destination. Here’s the current binding configuration for account-service. The orders-in destination is a queue created for direct communication with order-service, so only orders-out is grouped using spring.cloud.stream.bindings..group property.

spring:
  cloud:
    stream:
      bindings:
        output:
          destination: orders-in
        input:
          destination: orders-out
          group: account

Consumer group mechanisms is a concept taken from Apache Kafka, and implemented in Spring Cloud Stream also for RabbitMQ broker, which does not natively support it. So, I think it is pretty interesting how it is configured on RabbitMQ. If you run two instances of the service without setting group name on destination there are two bindings created for a single exchange (one binding per one instance) as shown in the picture below. Because two applications are listening on that exchange, there four bindings assigned to that exchange in total.

stream-3

If you set group name for selected destination Spring Cloud Stream will create a single binding for all running instances of given service. The name of binding will be suffixed with group name.

B08597_11_06

Because, we have included spring-cloud-starter-sleuth to the project dependencies the same traceId header is sent between all the asynchronous requests exchanged during realization of single request incoming to the order-service POST endpoint. Thanks to that we can easily correlate all logs using this header using Elastic Stack (Kibana).

B08597_11_05

Automated Testing

You can easily test your microservice without connecting to a message broker. To achieve it you need to include spring-cloud-stream-test-support to your project dependencies. It contains the TestSupportBinder bean that lets you interact with the bound channels and inspect any messages sent and received by the application.

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-stream-test-support</artifactId>
  <scope>test</scope>
</dependency>

In the test class we need to declare MessageCollector bean, which is responsible for receiving messages retained by TestSupportBinder. Here’s my test class from account-service. Using Processor bean I send test order to input channel. Then MessageCollector receives message that is sent back to order-service via output channel. Test method testAccepted creates order that should be accepted by account-service, while testRejected method sets too high order price that results in rejecting the order.

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class OrderReceiverTest {

	private static final Logger LOGGER = LoggerFactory.getLogger(OrderReceiverTest.class);

	@Autowired
	private Processor processor;
	@Autowired
	private MessageCollector messageCollector;

	@Test
	@SuppressWarnings("unchecked")
	public void testAccepted() {
		Order o = new Order();
		o.setId(1L);
		o.setAccountId(1L);
		o.setCustomerId(1L);
		o.setPrice(500);
		o.setProductIds(Collections.singletonList(2L));
		processor.input().send(MessageBuilder.withPayload(o).build());
		Message received = (Message) messageCollector.forChannel(processor.output()).poll();
		LOGGER.info("Order response received: {}", received.getPayload());
		assertNotNull(received.getPayload());
		assertEquals(OrderStatus.ACCEPTED, received.getPayload().getStatus());
	}

	@Test
	@SuppressWarnings("unchecked")
	public void testRejected() {
		Order o = new Order();
		o.setId(1L);
		o.setAccountId(1L);
		o.setCustomerId(1L);
		o.setPrice(100000);
		o.setProductIds(Collections.singletonList(2L));
		processor.input().send(MessageBuilder.withPayload(o).build());
		Message received = (Message) messageCollector.forChannel(processor.output()).poll();
		LOGGER.info("Order response received: {}", received.getPayload());
		assertNotNull(received.getPayload());
		assertEquals(OrderStatus.REJECTED, received.getPayload().getStatus());
	}

}

Conclusion

Message-driven microservices are a good choice whenever you don’t need synchronous response from your API. In this article I have shown sample use case of publish/subscribe model in inter-service communication between your microservices. The source code is as usual available on GitHub (https://github.com/piomin/sample-message-driven-microservices.git). For more interesting examples with usage of Spring Cloud Stream library, also with Apache Kafka, you can refer to Chapter 11 in my book Mastering Spring Cloud (https://www.packtpub.com/application-development/mastering-spring-cloud).

Local Continuous Delivery Environment with Docker and Jenkins

In this article I’m going to show you how to setup continuous delivery environment for building Docker images of our Java applications on the local machine. Our environment will consists of Gitlab (optional, otherwise you can use hosted GitHub), Jenkins master, Jenkins JNLP slave with Docker, and private Docker registry. All those tools will be run locally using their Docker images. Thanks to that you will be able to easily test it on your laptop, and then configure the same environment on production deployed on multiple servers or VMs. Let’s take a look on the architecture of the proposed solution.

art-docker-1

1. Running Jenkins Master

We use the latest Jenkins LTS image. Jenkins Web Dashboard is exposed on port 38080. Slave agents may connect master on default 50000 JNLP (Java Web Start) port.

$ docker run -d --name jenkins -p 38080:8080 -p 50000:50000 jenkins/jenkins:lts

After starting, you have to execute command docker logs jenkins in order to obtain an initial admin password. Find the following fragment in the logs, copy your generated password and paste in Jenkins start page available at http://192.168.99.100:38080.

art-docker-2

We have to install some Jenkins plugins to be able to checkout project from Git repository, build application from source code using Maven, and finally build and push Docker image to a private registry. Here’s a list of required plugins:

  • Git Plugin – this plugin allows to use Git as a build SCM
  • Maven Integration Plugin – this plugin provides advanced integration for Maven 2/3
  • Pipeline Plugin – this is a suite of plugins that allows you to create continuous delivery pipelines as a code, and run them in Jenkins
  • Docker Pipeline Plugin – this plugin allows you to build and use Docker containers from pipelines

2. Building Jenkins Slave

Pipelines are usually run on different machine than machine with master node. Moreover, we need to have Docker engine installed on that slave machine to be able to build Docker images. Although, there are some ready Docker images with Docker-in-Docker and Jenkins client agent, I have never find the image with JDK, Maven, Git and Docker installed. This is most commonly used tools when building images for your microservices, so it is definitely worth to have such an image with Jenkins image prepared.

Here’s the Dockerfile with Jenkins Docker-in-Docker slave with Git, Maven and OpenJDK installed. I used Docker-in-Docker as a base image (1). We can override some properties when running our container. You will probably have to override default Jenkins master address (2) and slave secret key (3). The rest of parameters is optional, but you can even decide to use external Docker daemon by overriding DOCKER_HOST environment variable. We also download and install Maven (4) and create user with special sudo rights for running Docker (5). Finally we run entrypoint.sh script, which starts Docker daemon and Jenkins agent (6).

FROM docker:18-dind # (1)
MAINTAINER Piotr Minkowski
ENV JENKINS_MASTER http://localhost:8080 # (2)
ENV JENKINS_SLAVE_NAME dind-node
ENV JENKINS_SLAVE_SECRET "" # (3)
ENV JENKINS_HOME /home/jenkins
ENV JENKINS_REMOTING_VERSION 3.17
ENV DOCKER_HOST tcp://0.0.0.0:2375
RUN apk --update add curl tar git bash openjdk8 sudo

ARG MAVEN_VERSION=3.5.2 # (4)
ARG USER_HOME_DIR="/root"
ARG SHA=707b1f6e390a65bde4af4cdaf2a24d45fc19a6ded00fff02e91626e3e42ceaff
ARG BASE_URL=https://apache.osuosl.org/maven/maven-3/${MAVEN_VERSION}/binaries

RUN mkdir -p /usr/share/maven /usr/share/maven/ref \
  && curl -fsSL -o /tmp/apache-maven.tar.gz ${BASE_URL}/apache-maven-${MAVEN_VERSION}-bin.tar.gz \
  && echo "${SHA}  /tmp/apache-maven.tar.gz" | sha256sum -c - \
  && tar -xzf /tmp/apache-maven.tar.gz -C /usr/share/maven --strip-components=1 \
  && rm -f /tmp/apache-maven.tar.gz \
  && ln -s /usr/share/maven/bin/mvn /usr/bin/mvn

ENV MAVEN_HOME /usr/share/maven
ENV MAVEN_CONFIG "$USER_HOME_DIR/.m2"
# (5)
RUN adduser -D -h $JENKINS_HOME -s /bin/sh jenkins jenkins && chmod a+rwx $JENKINS_HOME
RUN echo "jenkins ALL=(ALL) NOPASSWD: /usr/local/bin/dockerd" > /etc/sudoers.d/00jenkins && chmod 440 /etc/sudoers.d/00jenkins
RUN echo "jenkins ALL=(ALL) NOPASSWD: /usr/local/bin/docker" > /etc/sudoers.d/01jenkins && chmod 440 /etc/sudoers.d/01jenkins
RUN curl --create-dirs -sSLo /usr/share/jenkins/slave.jar http://repo.jenkins-ci.org/public/org/jenkins-ci/main/remoting/$JENKINS_REMOTING_VERSION/remoting-$JENKINS_REMOTING_VERSION.jar && chmod 755 /usr/share/jenkins && chmod 644 /usr/share/jenkins/slave.jar

COPY entrypoint.sh /usr/local/bin/entrypoint
VOLUME $JENKINS_HOME
WORKDIR $JENKINS_HOME
USER jenkins
ENTRYPOINT ["/usr/local/bin/entrypoint"] # (6)

Here’s the script entrypoint.sh.

#!/bin/sh
set -e
echo "starting dockerd..."
sudo dockerd --host=unix:///var/run/docker.sock --host=$DOCKER_HOST --storage-driver=vfs &
echo "starting jnlp slave..."
exec java -jar /usr/share/jenkins/slave.jar \
	-jnlpUrl $JENKINS_URL/computer/$JENKINS_SLAVE_NAME/slave-agent.jnlp \
	-secret $JENKINS_SLAVE_SECRET

The source code with image definition is available on GitHub. You can clone the repository https://github.com/piomin/jenkins-slave-dind-jnlp.git, build image and then start container using the following commands.

$ docker build -t piomin/jenkins-slave-dind-jnlp .
$ docker run --privileged -d --name slave -e JENKINS_SLAVE_SECRET=5664fe146104b89a1d2c78920fd9c5eebac3bd7344432e0668e366e2d3432d3e -e JENKINS_SLAVE_NAME=dind-node-1 -e JENKINS_URL=http://192.168.99.100:38080 piomin/jenkins-slave-dind-jnlp

Building it is just an optional step, because image is already available on my Docker Hub account.

art-docker-3

3. Enabling Docker-in-Docker Slave

To add new slave node you need to navigate to section Manage Jenkins -> Manage Nodes -> New Node. Then define permanent node with name parameter filled. The most suitable name is default name declared inside Docker image definition – dind-node. You also have to set remote root directory, which should be equal to path defined inside container for JENKINS_HOME environment variable. In my case it is /home/jenkins. The slave node should be launched via Java Web Start (JNLP).

art-docker-4

New node is visible on the list of nodes as disabled. You should click in order to obtain its secret key.

art-docker-5

Finally, you may run your slave container using the following command containing secret copied from node’s panel in Jenkins Web Dashboard.

$ docker run --privileged -d --name slave -e JENKINS_SLAVE_SECRET=fd14247b44bb9e03e11b7541e34a177bdcfd7b10783fa451d2169c90eb46693d -e JENKINS_URL=http://192.168.99.100:38080 piomin/jenkins-slave-dind-jnlp

If everything went according to plan you should see enabled node dind-node in the node’s list.

art-docker-6

4. Setting up Docker Private Registry

After deploying Jenkins master and slave, there is the last required element in architecture that has to be launched – private Docker registry. Because we will access it remotely (from Docker-in-Docker container) we have to configure secure TLS/SSL connection. To achieve it we should first generate TLS certificate and key. We can use openssl tool for it. We begin from generating a private key.

$ openssl genrsa -des3 -out registry.key 1024

Then, we should generate a certificate request file (CSR) by executing the following command.

$ openssl req -new -key registry.key -out registry.csr

Finally, we can generate a self-signed SSL certificate that is valid for 1 year using openssl command as shown below.

$ openssl x509 -req -days 365 -in registry.csr -signkey registry.key -out registry.crt

Don’t forget to remove passphrase from your private key.

$ openssl rsa -in registry.key -out registry-nopass.key -passin pass:123456

You should copy generated .key and .crt files to your docker machine. After that you may run Docker registry using the following command.

docker run -d -p 5000:5000 --restart=always --name registry -v /home/docker:/certs -e REGISTRY_HTTP_TLS_CERTIFICATE=/certs/registry.crt -e REGISTRY_HTTP_TLS_KEY=/certs/registry-nopass.key registry:2

If a registry has been successfully started you should able to access it over HTTPS by calling address https://192.168.99.100:5000/v2/_catalog from your web browser.

5. Creating application Dockerfile

The sample applications source code is available on GitHub in repository sample-spring-microservices-new (https://github.com/piomin/sample-spring-microservices-new.git). There are some modules with microservices. Each of them has Dockerfile created in the root directory. Here’s typical Dockerfile for our microservice built on top of Spring Boot.

FROM openjdk:8-jre-alpine
ENV APP_FILE employee-service-1.0-SNAPSHOT.jar
ENV APP_HOME /app
EXPOSE 8090
COPY target/$APP_FILE $APP_HOME/
WORKDIR $VERTICLE_HOME
ENTRYPOINT ["sh", "-c"]
CMD ["exec java -jar $APP_FILE"]

6. Building pipeline through Jenkinsfile

This step is the most important phase of our exercise. We will prepare pipeline definition, which combines together all the currently discussed tools and solutions. This pipeline definition is a part of every sample application source code. The change in Jenkinsfile is treated the same as a change in the source code responsible for implementing business logic.
Every pipeline is divided into stages. Every stage defines a subset of tasks performed through the entire pipeline. We can select the node, which is responsible for executing pipeline’s steps or leave it empty to allow random selection of the node. Because we have already prepared dedicated node with Docker, we force pipeline to being built by that node. In the first stage called Checkout we pull the source code from Git repository (1). Then we build an application binary using Maven command (2). Once the fat JAR file has been prepared we may proceed to building application’s Docker image (3). We use methods provided by Docker Pipeline Plugin. Finally, we push the Docker image with fat JAR file to secure private Docker registry (4). Such an image may be accessed by any machine that has Docker installed and has access to our Docker registry. Here’s the full code of Jenkinsfile prepared for module config-service.

node('dind-node') {
    stage('Checkout') { # (1)
      git url: 'https://github.com/piomin/sample-spring-microservices-new.git', credentialsId: 'piomin-github', branch: 'master'
    }
    stage('Build') { # (2)
      dir('config-service') {
        sh 'mvn clean install'
        def pom = readMavenPom file:'pom.xml'
        print pom.version
        env.version = pom.version
        currentBuild.description = "Release: ${env.version}"
      }
    }
    stage('Image') {
      dir ('config-service') {
        docker.withRegistry('https://192.168.99.100:5000') {
          def app = docker.build "piomin/config-service:${env.version}" # (3)
          app.push() # (4)
        }
      }
    }
}

7. Creating Pipeline in Jenkins Web Dashboard

After preparing application’s source code, Dockerfile and Jenkinsfile the only thing left is to create pipeline using Jenkins UI. We need to select New Item -> Pipeline and type the name of our first Jenkins pipeline. Then go to Configure panel and select Pipeline script from SCM in Pipeline section. Inside the following form we should fill an address of Git repository, user credentials and a location of Jenkinsfile.

art-docker-7

8. Configure GitLab WebHook (Optionally)

If you run GitLab locally using its Docker image you will be able to configure webhook, which triggers run of your pipeline after pushing changes to Git repository. To run GitLab using Docker execute the following command.

$ docker run -d --name gitlab -p 10443:443 -p 10080:80 -p 10022:22
gitlab/gitlab-ce:latest

Before configuring webhook in GitLab Dashboard we need to enable this feature for Jenkins pipeline. To achieve it we should first install GitLab Plugin.

art-docker-8

Then, you should come back to the pipeline’s configuration panel and enable GitLab build trigger. After that, webhook will be available for our sample pipeline called config-service-pipeline under URL http://192.168.99.100:38080/project/config-service-pipeline as shown in the following picture.

art-docker-9

Before proceeding to configuration of webhook in GitLab Dashboard you should retrieve your Jenkins user API token. To achieve it go to profile panel, select Configure and click button Show API Token.

art-docker-10

To add a new WebHook for your Git repository, you need to go to the section Settings -> Integrations and then fill the URL field with webhook address copied from Jenkins pipeline. Then paste Jenkins user API token into field Secret Token. Leave the Push events checkbox selected.

art-docker-11

9. Running pipeline

Now, we may finally run our pipeline. If you use GitLab Docker container as Git repository platform you just have to push changes in the source code. Otherwise you have to manually start build of pipeline. The first build will take a few minutes, because Maven has to download dependencies required for building an application. If everything will end with success you should see the following result on your pipeline dashboard.

art-docker-13

You can check out the list of images stored in your private Docker registry by calling the following HTTP API endpoint in your web browser: https://192.168.99.100:5000/v2/_catalog.

art-docker-12

Managing Spring Boot apps locally with Trampoline

Today I came across interesting solution for managing Spring Boot applications locally – Trampoline. It is rather a simple product, that provides web console allowing you to start, stop and monitor your application. However, it can sometimes be useful, especially if you run many different applications locally during microservices development. In this article I’m going to show the main features provided by Trampoline.

How it works

Trampoline is also Spring Boot application, so you can easily start it using your IDE or with java -jar command after building the project with mvn clean install. By default web console is available on 8080 port, but you can easily override it with server.port parameter. It allows you to:

  • Start your application – it is realized by running Maven Spring Boot plugin command mvn spring-boot:run that build the binary from source code and run Java application
  • Shutdown your application – it is realized by calling Spring Boot Actuator /shutdown endpoint that performs gracefully shutdown of your application
  • Monitor your application – it displays some basic information retrieved from Spring Boot Actuator endpoints like trace, logs, metrics and Git commit data.

Setup

First, you need to clone Trampoline repository from GitHub. It is available here: https://github.com/ErnestOrt/Trampoline.git. The application is available inside trampoline directory. You can run its main class Application or just run Maven command mvn spring-boot:run. And it is all. Trampoline is available under address http://localhost:8080.

Configuring applications

We will use one of my previous sample of microservices built with Spring Boot 2.0. It is available on my GitHub account in repository sample-spring-microservices-new available here: https://github.com/piomin/sample-spring-microservices-new.git. Before deploying these microservices on Trampoline we need to perform some minor changes. First, all the microservices have to expose Spring Boot Actuator endpoints. Be sure that endpoint /shutdown is enabled. All changes should be perform in Spring Boot YAML configuration files, which are stored on config-service.

management:
  endpoint.shutdown.enabled: true
  endpoints.web.exposure.include: '*'

If you would like to provide information about last commit you should include Maven plugin git-commit-id-plugin, which is executed during application build. Of course, you also need to add spring-boot-maven-plugin plugin, which is used for building and running Spring Boot application from Maven. All the required changes are available in branch trampoline (https://github.com/piomin/sample-spring-microservices-new/tree/trampoline).

<build>
	<plugins>
		<plugin>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-maven-plugin</artifactId>
		</plugin>
		<plugin>
			<groupId>pl.project13.maven</groupId>
			<artifactId>git-commit-id-plugin</artifactId>
		</plugin>
	</plugins>
</build>

Adding microservices

The further configuration will be provided using Trampoline web console. First, got to section SETTINGS. You need to register every single instance of your microservices. You can register:

  • External, already running application by providing its IP address and HTTP port
  • Git repository with your microservice, which then will be cloned into your machine
  • Git repository with your microservice existing on the local machine just by providing its location

I have cloned the repository with microservices by myself, so I’m selecting a third choice. Inside Register Microservice form we have to set microservice name, port, actuator endpoint context path, default build tool and Maven pom.xml file location.

trampoline-1

It is important to remember about setting Maven home location in the panel Maven Settings. After registering all sample microservices (config-service, discovery-service, gateway-service, and three Spring Cloud applications) we may add them to one group. It is very useful feature, because then we could deploy them all with one click.

trampoline-2

Here’s the full list of services registered in Trampoline.

trampoline-3

Managing microservices

Now, we can navigate to the section INSTANCES. We can launch single instance of microservices or a group of microservices. If you would like to launch a single instance just select it from list on Launch Instance panel and click button Launch. It immediately starts new command window, builds your application from source code and launches it under selected port.

trampoline-4

The list of running microservices is available below. You can see there application’s HTTP port and status. You may also display trace, logs or metrics by clicking on one of icon available at every row.

trampoline-5

Here’s an information about last commit for discovery-service.

trampoline-6

If you decide to restart an application Trampoline sends request to /shutdown endpoint, rebuilds your application with newest version of code and runs it again. Alternatively, you may use Spring Boot Devtools (by including dependency org.springframework.boot:spring-boot-devtools), which forces your application to be restarted after source code modification. Because Trampoline is continuously monitoring status of all registered applications by calling its actuator endpoints you will still see the full list of running microservices.

Testing microservices on OpenShift using Arquillian Cube

I had a touch with Arquillian framework for the first time when I was building the automated end-to-end tests for JavaEE based applications. At that time testing applications deployed on JavaEE servers was not very comfortable. Arquillian came with nice solution for that problem. It has been providing useful mechanisms for testing EJBs deployed on an embedded application server.
Currently, Arquillian provides multiple modules dedicated for different technologies and use cases. One of these modules is Arquillian Cube. With this extension you can create integration/functional tests running on Docker containers or even more advanced orchestration platforms like Kubernetes or OpenShift.
In this article I’m going to show you how to use Arquillian Cube for building integration tests for applications running on OpenShift platform. All the examples would be deployed locally on Minishift. Here’s the full list of topics covered in this article:

  • Using Arquillian Cube for deploying, and running applications on Minishift
  • Testing applications deployed on Minishift by calling their REST API exposed using OpenShift routes
  • Testing inter-service communication between deployed applications basing on Kubernetes services

Before reading this article it is worth to consider reading two of my previous articles about Kubernetes and OpenShift:

The following picture illustrates the architecture of currently discussed solution. We will build and deploy two sample applications on Minishift. They integrate with NoSQL database, which is also ran as a service on OpenShift platform.

arquillian-1

Now, we may proceed to the development.

1. Including Arquillian Cube dependencies

Before including dependencies to Arquillian Cube libraries we should define dependency management section in our pom.xml. It should contain BOM of Arquillian framework and also of its Cube extension.

<dependencyManagement>
     <dependencies>
          <dependency>
                <groupId>org.arquillian.cube</groupId>
                <artifactId>arquillian-cube-bom</artifactId>
                <version>1.15.3</version>
                <scope>import</scope>
                <type>pom</type>
          </dependency>
          <dependency>
                <groupId>org.jboss.arquillian</groupId>
                <artifactId>arquillian-bom</artifactId>
                <version>1.4.0.Final</version>
                <scope>import</scope>
                <type>pom</type>
          </dependency>
     </dependencies>
</dependencyManagement>

Here’s the list of libraries used in my sample project. The most important thing is to include starter for Arquillian Cube OpenShift extension, which contains all required dependencies. It is also worth to include arquillian-cube-requirement artifact if you would like to annotate test class with @RunWith(ArquillianConditionalRunner.class), and openshift-client in case you would like to use Fabric8 OpenShiftClient.

<dependency>
     <groupId>org.jboss.arquillian.junit</groupId>
     <artifactId>arquillian-junit-container</artifactId>
     <version>1.4.0.Final</version>
     <scope>test</scope>
</dependency>
<dependency>
     <groupId>org.arquillian.cube</groupId>
     <artifactId>arquillian-cube-requirement</artifactId>
     <scope>test</scope>
</dependency>
<dependency>
     <groupId>org.arquillian.cube</groupId>
     <artifactId>arquillian-cube-openshift-starter</artifactId>
     <scope>test</scope>
</dependency>
<dependency>
     <groupId>io.fabric8</groupId>
     <artifactId>openshift-client</artifactId>
     <version>3.1.12</version>
     <scope>test</scope>
</dependency>

2. Running Minishift

I gave you a detailed instruction how to run Minishift locally in my previous articles about OpenShift. Here’s the full list of commands that should be executed in order to start Minishift, reuse Docker daemon managed by Minishift and create test namespace (project).

$ minishift start --vm-driver=virtualbox --memory=2G
$ minishift docker-env
$ minishift oc-env
$ oc login -u developer -p developer
$ oc new-project sample-deployment

We also have to create Mongo database service on OpenShift. OpenShift platform provides an easily way of deploying built-in services via web console available at https://192.168.99.100:8443. You can select there the required service on main dashboard, and just confirm the installation using default properties. Otherwise, you would have to provide YAML template with deployment configuration, and apply it to Minishift using oc command. YAML file will be also required if you decide to recreate namespace on every single test case (explained in the subsequent text in Step 3). I won’t paste here content of the template with configuration for creating MongoDB service on Minishift. This file is available in my GitHub repository in the /openshift/mongo-deployment.yaml file. To access that file you need to clone repository sample-vertx-kubernetes and switch to branch openshift (https://github.com/piomin/sample-vertx-kubernetes/tree/openshift-tests). It contains definitions of secret, persistentVolumeClaim, deploymentConfig and service.

arquillian-2

3. Configuring connection with Minishift for Arquillian

All the Arquillian configuration settings should be provided in arquillian.xml file located in src/test/resources directory. When running Arquillian tests on Minishift you generally have two approaches that may be applied. You can create new namespace per every test suite and then remove it after the test or just use the existing one, and then remove all the created components within the selected namespace. First approach is set by default for every test until you modify it inside Arquillian configuration file using namespace.use.existing and namespace.use.current properties.

<extension qualifier="openshift">
	<property name="namespace.use.current">true</property>
	<property name="namespace.use.existing">sample-deployment</property>
	<property name="kubernetes.master">https://192.168.99.100:8443</property>
	<property name="cube.auth.token">EMNHP8QIB4A_VU4kE_vQv8k9he_4AV3GTltrzd06yMU</property>
</extension>

You also have to set Kubernetes master address and API token. In order to obtain token just run the following command.

$ oc whoami -t
EMNHP8QIB4A_VU4kE_vQv8k9he_4AV3GTltrzd06yMU

4. Building Arquillian JUnit test

Every JUnit test class should be annotated with @RequiresOpenshift. It should also have runner set. In this case it is ArquillianConditionalRunner. The test method testCustomerRoute applies the configuration passed inside file deployment.yaml, which is assigned to the method using @Template annotation.
The important part of this unit test is route’s URL declaration. We have to annotate it with the following annotation:

  • @RouteURL – it searches for a route with a name defined using value parameter and inject it into URL object instance
  • @AwaitRoute – if you do not declare this annotation the test will finish just after running, because deployment on OpenShift is processed asynchronously. @AwaitRoute will force test to wait until route is available on Minishift. We can set the timeout of waiting for route (in this case it is 2 minutes) and route’s path. Especially route’s path is very important here, without it our test won’t locate the route and finished with 2 minutes timeout.

The test method is very simple. In fact, I only send POST request with JSON object to the endpoint assigned to the customer-route route and verify if HTTP status code is 200. Because I had a problem with injecting route’s URL (in fact it doesn’t work for my sample with Minishift v3.9.0, while it works with Minishift v3.7.1) I needed to prepare it manually in the code. If it works properly we could use URL url instance for that.

@Category(RequiresOpenshift.class)
@RequiresOpenshift
@RunWith(ArquillianConditionalRunner.class)
public class CustomerServiceApiTest {

    private static final Logger LOGGER = LoggerFactory.getLogger(CustomerServiceApiTest.class);

    @ArquillianResource
    OpenShiftAssistant assistant;
    @ArquillianResource
    OpenShiftClient client;

    @RouteURL(value = "customer-route")
    @AwaitRoute(timeoutUnit = TimeUnit.MINUTES, timeout = 2, path = "/customer")
    private URL url;

    @Test
    @Template(url = "classpath:deployment.yaml")
    public void testCustomerRoute() {
        OkHttpClient httpClient = new OkHttpClient();
        RequestBody body = RequestBody.create(MediaType.parse("application/json"), "{\"name\":\"John Smith\", \"age\":33}");
        Request request = new Request.Builder().url("http://customer-route-sample-deployment.192.168.99.100.nip.io/customer").post(body).build();
        try {
            Response response = httpClient.newCall(request).execute();
            LOGGER.info("Test: response={}", response.body().string());
            Assert.assertNotNull(response.body());
            Assert.assertEquals(200, response.code());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

5. Preparing deployment configuration

Before running the test we have to prepare template with configuration, which is loaded by Arquillian Cube using @Template annotation. We need to create deploymentConfig, inject there MongoDB credentials stored in secret object, and finally expose the service outside container using route object.

kind: Template
apiVersion: v1
metadata:
  name: customer-template
objects:
  - kind: ImageStream
    apiVersion: v1
    metadata:
      name: customer-image
    spec:
      dockerImageRepository: piomin/customer-vertx-service
  - kind: DeploymentConfig
    apiVersion: v1
    metadata:
      name: customer-service
    spec:
      template:
        metadata:
          labels:
            name: customer-service
        spec:
          containers:
          - name: customer-vertx-service
            image: piomin/customer-vertx-service
            ports:
            - containerPort: 8090
              protocol: TCP
            env:
            - name: DATABASE_USER
              valueFrom:
                secretKeyRef:
                  key: database-user
                  name: mongodb
            - name: DATABASE_PASSWORD
              valueFrom:
                secretKeyRef:
                  key: database-password
                  name: mongodb
            - name: DATABASE_NAME
              valueFrom:
                secretKeyRef:
                  key: database-name
                  name: mongodb
      replicas: 1
      triggers:
      - type: ConfigChange
      - type: ImageChange
        imageChangeParams:
          automatic: true
          containerNames:
          - customer-vertx-service
          from:
            kind: ImageStreamTag
            name: customer-image:latest
      strategy:
        type: Rolling
      paused: false
      revisionHistoryLimit: 2
      minReadySeconds: 0
  - kind: Service
    apiVersion: v1
    metadata:
      name: customer-service
    spec:
      ports:
      - name: "web"
        port: 8090
        targetPort: 8090
      selector:
        name: customer-service
  - kind: Route
    apiVersion: v1
    metadata:
      name: customer-route
    spec:
      path: "/customer"
      to:
        kind: Service
        name: customer-service

6. Testing inter-service communication

In the sample project the communication with other microservices is realized by Vert.x WebClient. It takes Kubernetes service name and its container port as parameters. It is implemented inside customer-service by AccountClient, which is then invoked inside Vert.x HTTP route implementation. Here’s AccountClient implementation.

public class AccountClient {

	private static final Logger LOGGER = LoggerFactory.getLogger(AccountClient.class);
	
	private Vertx vertx;

	public AccountClient(Vertx vertx) {
		this.vertx = vertx;
	}
	
	public AccountClient findCustomerAccounts(String customerId, Handler<AsyncResult<List>> resultHandler) {
		WebClient client = WebClient.create(vertx);
		client.get(8095, "account-service", "/account/customer/" + customerId).send(res2 -> {
			LOGGER.info("Response: {}", res2.result().bodyAsString());
			List accounts = res2.result().bodyAsJsonArray().stream().map(it -> Json.decodeValue(it.toString(), Account.class)).collect(Collectors.toList());
			resultHandler.handle(Future.succeededFuture(accounts));
		});
		return this;
	}
	
}

Endpoint GET /account/customer/:customerId exposed by account-service is called within implementation of method GET /customer/:id exposed by customer-service. This time we create new namespace instead using the existing one. That’s why we have to apply MongoDB deployment configuration before applying configuration of sample services. We also need to upload configuration of account-service that is provided inside account-deployment.yaml file. The rest part of JUnit test is pretty similar to the test described in Step 4. It waits until customer-route is available on Minishift. The only differences are in calling URL and dynamic injection of namespace into route’s URL.

@Category(RequiresOpenshift.class)
@RequiresOpenshift
@RunWith(ArquillianConditionalRunner.class)
@Templates(templates = {
        @Template(url = "classpath:mongo-deployment.yaml"),
        @Template(url = "classpath:deployment.yaml"),
        @Template(url = "classpath:account-deployment.yaml")
})
public class CustomerCommunicationTest {

    private static final Logger LOGGER = LoggerFactory.getLogger(CustomerCommunicationTest.class);

    @ArquillianResource
    OpenShiftAssistant assistant;

    String id;
    
    @RouteURL(value = "customer-route")
    @AwaitRoute(timeoutUnit = TimeUnit.MINUTES, timeout = 2, path = "/customer")
    private URL url;

    // ...

    @Test
    public void testGetCustomerWithAccounts() {
        LOGGER.info("Route URL: {}", url);
        String projectName = assistant.getCurrentProjectName();
        OkHttpClient httpClient = new OkHttpClient();
        Request request = new Request.Builder().url("http://customer-route-" + projectName + ".192.168.99.100.nip.io/customer/" + id).get().build();
        try {
            Response response = httpClient.newCall(request).execute();
            LOGGER.info("Test: response={}", response.body().string());
            Assert.assertNotNull(response.body());
            Assert.assertEquals(200, response.code());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

}

You can run the test using your IDE or just by executing command mvn clean install.

Conclusion

Arquillian Cube comes with gentle solution for integration testing over Kubernetes and OpenShift platforms. It is not difficult to prepare and upload configuration with database and microservices and then deploy it on OpenShift node. You can event test communication between microservices just by deploying dependent application with OpenShift template.

Chaos Monkey for Spring Boot Microservices

How many of you have never encountered a crash or a failure of your systems in production environment? Certainly, each one of you, sooner or later, has experienced it. If we are not able to avoid a failure, the solution seems to be maintaining our system in the state of permanent failure. This concept underpins the tool invented by Netflix to test the resilience of its IT infrastructure – Chaos Monkey. A few days ago I came across the solution, based on the idea behind Netflix’s tool, designed to test Spring Boot applications. Such a library has been implemented by Codecentric. Until now, I recognize them only as the authors of other interesting solution dedicated for Spring Boot ecosystem – Spring Boot Admin. I have already described this library in one of my previous articles Monitoring Microservices With Spring Boot Admin (https://piotrminkowski.wordpress.com/2017/06/26/monitoring-microservices-with-spring-boot-admin).
Today I’m going to show you how to include Codecentric’s Chaos Monkey in your Spring Boot application, and then implement chaos engineering in sample system consists of some microservices. The Chaos Monkey library can be used together with Spring Boot 2.0, and the current release version of it is 1.0.1. However, I’ll implement the sample using version 2.0.0-SNAPSHOT, because it has some new interesting features not available in earlier versions of this library. In order to be able to download SNAPSHOT version of Codecentric’s Chaos Monkey library you have to remember about including Maven repository https://oss.sonatype.org/content/repositories/snapshots to your repositories in pom.xml.

1. Enable Chaos Monkey for an application

There are two required steps for enabling Chaos Monkey for Spring Boot application. First, let’s add library chaos-monkey-spring-boot to the project’s dependencies.

<dependency>
	<groupId>de.codecentric</groupId>
	<artifactId>chaos-monkey-spring-boot</artifactId>
	<version>2.0.0-SNAPSHOT</version>
</dependency>

Then, we should activate profile chaos-monkey on application startup.

$ java -jar target/order-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey

2. Sample system architecture

Our sample system consists of three microservices, each started in two instances, and a service discovery server. Microservices registers themselves against a discovery server, and communicates with each other through HTTP API. Chaos Monkey library is included to every single instance of all running microservices, but not to the discovery server. Here’s the diagram that illustrates the architecture of our sample system.

chaos

The source code of sample applications is available on GitHub in repository sample-spring-chaosmonkey (https://github.com/piomin/sample-spring-chaosmonkey.git). After cloning this repository and building it using mnv clean install command, you should first run discovery-service. Then run two instances of every microservice on different ports by setting -Dserver.port property with an appropriate number. Here’s a set of my running commands.

$ java -jar target/discovery-service-1.0-SNAPSHOT.jar
$ java -jar target/order-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey
$ java -jar -Dserver.port=9091 target/order-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey
$ java -jar target/product-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey
$ java -jar -Dserver.port=9092 target/product-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey
$ java -jar target/customer-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey
$ java -jar -Dserver.port=9093 target/customer-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey

3. Process configuration

In version 2.0.0-SNAPSHOT of chaos-monkey-spring-boot library Chaos Monkey is by default enabled for applications that include it. You may disable it using property chaos.monkey.enabled. However, the only assault which is enabled by default is latency. This type of assault adds a random delay to the requests processed by the application in the range determined by properties chaos.monkey.assaults.latencyRangeStart and chaos.monkey.assaults.latencyRangeEnd. The number of attacked requests is dependent of property chaos.monkey.assaults.level, where 1 means each request and 10 means each 10th request. We can also enable exception and appKiller assault for our application. For simplicity, I set the configuration for all the microservices. Let’s take a look on settings provided in application.yml file.

chaos:
  monkey:
    assaults:
	  level: 8
	  latencyRangeStart: 1000
	  latencyRangeEnd: 10000
	  exceptionsActive: true
	  killApplicationActive: true
	watcher:
	  repository: true
      restController: true

In theory, the configuration visible above should enable all three available types of assaults. However, if you enable latency and exceptions, killApplication will never happen. Also, if you enable both latency and exceptions, all the requests send to application will be attacked, no matter which level is set with chaos.monkey.assaults.level property. It is important to remember about activating restController watcher, which is disabled by default.

4. Enable Spring Boot Actuator endpoints

Codecentric implements a new feature in the version 2.0 of their Chaos Monkey library – the endpoint for Spring Boot Actuator. To enable it for our applications we have to activate it following actuator convention – by setting property management.endpoint.chaosmonkey.enabled to true. Additionally, beginning from version 2.0 of Spring Boot we have to expose that HTTP endpoint to be available after application startup.

management:
  endpoint:
    chaosmonkey:
      enabled: true
  endpoints:
    web:
      exposure:
        include: health,info,chaosmonkey

The chaos-monkey-spring-boot provides several endpoints allowing you to check out and modify configuration. You can use method GET /chaosmonkey to fetch the whole configuration of library. Yo may also disable chaos monkey after starting application by calling method POST /chaosmonkey/disable. The full list of available endpoints is listed here: https://codecentric.github.io/chaos-monkey-spring-boot/2.0.0-SNAPSHOT/#endpoints.

5. Running applications

All the sample microservices stores data in MySQL. So, the first step is to run MySQL database locally using its Docker image. The Docker command visible below also creates database and user with password.

$ docker run -d --name mysql -e MYSQL_DATABASE=chaos -e MYSQL_USER=chaos -e MYSQL_PASSWORD=chaos123 -e MYSQL_ROOT_PASSWORD=123456 -p 33306:3306 mysql

After running all the sample applications, where all microservices are multiplied in two instances listening on different ports, our environment looks like in the figure below.

chaos-4

You will see the following information in your logs during application boot.

chaos-5

We may check out Chaos Monkey configuration settings for every running instance of application by calling the following actuator endpoint.

chaos-3

6. Testing the system

For the testing purposes, I used popular performance testing library – Gatling. It creates 20 simultaneous threads, which calls POST /orders and GET /order/{id} methods exposed by order-service via API gateway 500 times per each thread.

class ApiGatlingSimulationTest extends Simulation {

  val scn = scenario("AddAndFindOrders").repeat(500, "n") {
        exec(
          http("AddOrder-API")
            .post("http://localhost:8090/order-service/orders")
            .header("Content-Type", "application/json")
            .body(StringBody("""{"productId":""" + Random.nextInt(20) + ""","customerId":""" + Random.nextInt(20) + ""","productsCount":1,"price":1000,"status":"NEW"}"""))
            .check(status.is(200),  jsonPath("$.id").saveAs("orderId"))
        ).pause(Duration.apply(5, TimeUnit.MILLISECONDS))
        .
        exec(
          http("GetOrder-API")
            .get("http://localhost:8090/order-service/orders/${orderId}")
            .check(status.is(200))
        )
  }

  setUp(scn.inject(atOnceUsers(20))).maxDuration(FiniteDuration.apply(10, "minutes"))

}

POST endpoint is implemented inside OrderController in add(...) method. It calls find methods exposed by customer-service and product-service using OpenFeign clients. If customer has a sufficient funds and there are still products in stock, it accepts the order and performs changes for customer and product using PUT methods. Here’s the implementation of two methods tested by Gatling performance test.

@RestController
@RequestMapping("/orders")
public class OrderController {

	@Autowired
	OrderRepository repository;
	@Autowired
	CustomerClient customerClient;
	@Autowired
	ProductClient productClient;

	@PostMapping
	public Order add(@RequestBody Order order) {
		Product product = productClient.findById(order.getProductId());
		Customer customer = customerClient.findById(order.getCustomerId());
		int totalPrice = order.getProductsCount() * product.getPrice();
		if (customer != null && customer.getAvailableFunds() >= totalPrice && product.getCount() >= order.getProductsCount()) {
			order.setPrice(totalPrice);
			order.setStatus(OrderStatus.ACCEPTED);
			product.setCount(product.getCount() - order.getProductsCount());
			productClient.update(product);
			customer.setAvailableFunds(customer.getAvailableFunds() - totalPrice);
			customerClient.update(customer);
		} else {
			order.setStatus(OrderStatus.REJECTED);
		}
		return repository.save(order);
	}

	@GetMapping("/{id}")
	public Order findById(@PathVariable("id") Integer id) {
		Optional order = repository.findById(id);
		if (order.isPresent()) {
			Order o = order.get();
			Product product = productClient.findById(o.getProductId());
			o.setProductName(product.getName());
			Customer customer = customerClient.findById(o.getCustomerId());
			o.setCustomerName(customer.getName());
			return o;
		} else {
			return null;
		}
	}

	// ...

}

Chaos Monkey sets random latency between 1000 and 10000 milliseconds (as shown in the step 3). It is important to change default timeouts for Feign and Ribbon clients before starting a test. I decided to set readTimeout to 5000 milliseconds. It will cause some delayed requests to be timed out, while some will succeeded (around 50%-50%). Here’s timeouts configuration for Feign client.

feign:
  client:
    config:
      default:
        connectTimeout: 5000
        readTimeout: 5000
  hystrix:
    enabled: false

Here’s Ribbon client timeouts configuration for API gateway. We have also changed Hystrix settings to disable circuit breaker for Zuul.

ribbon:
  ConnectTimeout: 5000
  ReadTimeout: 5000

hystrix:
  command:
    default:
      execution:
        isolation:
          thread:
            timeoutInMilliseconds: 15000
      fallback:
        enabled: false
      circuitBreaker:
        enabled: false

To launch Gatling performance test go to performance-test directory and run gradle loadTest command. Here’s a result generated for the settings latency assaults. Of course, we can change this result by manipulating Chaos Monkey latency values or Ribbon and Feign timeout values.

chaos-5

Here’s Gatling graph with average response times. Results do not look good. However, we should remember that a single POST method from order-service calls two methods exposed by product-service and two methods exposed by customer-service.

chaos-6

Here’s the next Gatling result graph – this time it illustrates timeline with error and success responses. All HTML reports generated by Gatling during performance test are available under directory performance-test/build/gatling-results

chaos-7