Spring Boot Autoscaler

One of more important reasons we are deciding to use such a tools like Kubernetes, Pivotal Cloud Foundry or HashiCorp’s Nomad is an availability of auto-scaling our applications. Of course those tools provides many other useful mechanisms, but we can implement auto-scaling by ourselves. At first glance it seems to be difficult, but assuming we use Spring Boot as a framework for building our applications and Jenkins as a CI server, it finally does not require a lot of work. Today, I’m going to show you how to implement such a solutions using the following frameworks/tools:

  • Spring Boot
  • Spring Boot Actuator
  • Spring Cloud Netflix Eureka
  • Jenkins CI

How it works?

Every Spring Boot application, which contains Spring Boot Actuator library can expose metrics under endpoint /actuator/metrics. There are many valuable metrics that gives you the detailed information about an application status. Some of them may be especially important when talking about autoscaling: JVM, CPU metrics, a number of running threads and a number of incoming HTTP requests. There is dedicated Jenkins pipeline responsible for monitoring application’s metrics by polling endpoint /actuator/metrics periodically. If any monitored metrics is below or above target range it runs new instance or shutdown a running instance of application using another Actuator endpoint /actuator/shutdown. Before that, it needs to fetch the current list of running instances of a single application in order to get an address of existing application selected for shutting down or the address of server with the smallest number of running instances for a new instance of application..

spring-autoscaler-1

After discussing an architecture of our system we may proceed to the development. Our application needs to meet some requirements: it has to expose metrics and endpoint for graceful shutdown, it needs to register in Eureka after after startup and deregister on shutdown, and finally it also should dynamically allocate running port randomly from the pool of free ports. Thanks to Spring Boot we may easily implement all these mechanisms if five minutes 🙂

Dynamic port allocation

Since it is possible to run many instances of application on a single machine we have to guarantee that there won’t be conflicts in port numbers. Fortunately, Spring Boot provides such mechanisms for an application. We just need to set port number to 0 inside application.yml file using server.port property. Because our application registers itself in eureka it also needs to send unique instanceId, which is by default generated as a concatenation of fields spring.cloud.client.hostname, spring.application.name and server.port.
Here’s current configuration of our sample application. I have changed the template of instanceId field by replacing number of port to randomly generated number.

spring:
  application:
    name: example-service
server:
  port: ${PORT:0}
eureka:
  instance:
    instanceId: ${spring.cloud.client.hostname}:${spring.application.name}:${random.int[1,999999]}

Enabling Actuator metrics

To enable Spring Boot Actuator we need to include the following dependency to pom.xml.

<dependency>
	<groupId>org.springframework.boot</groupId>
	<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

We also have to enable exposure of actuator endpoints via HTTP API by setting property management.endpoints.web.exposure.include to '*'. Now, the list of all available metric names is available under context path /actuator/metrics, while detailed information for each metric under path /actuator/metrics/{metricName}.

Graceful shutdown

Besides metrics Spring Boot Actuator also provides endpoint for shutting down an application. However, in contrast to other endpoints this endpoint is not available by default. We have to set property management.endpoint.shutdown.enabled to true. After that we will be to stop our application by sending POST request to /actuator/shutdown endpoint.
This method of stopping application guarantees that service will unregister itself from Eureka server before shutdown.

Enabling Eureka discovery

Eureka is the most popular discovery server used for building microservices-based architecture with Spring Cloud. So, if you already have microservices and want to provide auto-scaling mechanisms for them, Eureka would be a natural choice. It contains IP address and port number of every registered instance of application. To enable Eureka on the client side you just need to include the following dependency to your pom.xml.

<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

As I have mentioned before we also have to guarantee an uniqueness of instanceId send to Eureka server by client-side application. It has been described in the step “Dynamic port allocation”.
The next step is to create application with embedded Eureka server. To achieve it we first need to include the following dependency into pom.xml.

<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>
</dependency>

The main class should be annotated with @EnableEurekaServer.

@SpringBootApplication
@EnableEurekaServer
public class DiscoveryApp {

    public static void main(String[] args) {
        new SpringApplicationBuilder(DiscoveryApp.class).run(args);
    }

}

Client-side applications by default tries to connect with Eureka server on localhost under port 8761. We only need single, standalone Eureka node, so we will disable registration and attempts to fetching list of services form another instances of server.

spring:
  application:
    name: discovery-service
server:
  port: ${PORT:8761}
eureka:
  instance:
    hostname: localhost
  client:
    registerWithEureka: false
    fetchRegistry: false
    serviceUrl:
      defaultZone: http://localhost:8761/eureka/

The tests of the sample autoscaling system will be performed using Docker containers, so we need to prepare and build image with Eureka server. Here’s Dockerfile with image definition. It can be built using command docker build -t piomin/discovery-server:2.0 ..

FROM openjdk:8-jre-alpine
ENV APP_FILE discovery-service-1.0-SNAPSHOT.jar
ENV APP_HOME /usr/apps
EXPOSE 8761
COPY target/$APP_FILE $APP_HOME/
WORKDIR $APP_HOME
ENTRYPOINT ["sh", "-c"]
CMD ["exec java -jar $APP_FILE"]

Building Jenkins pipeline for autoscaling

The first step is to prepare Jenkins pipeline responsible for autoscaling. We will create Jenkins Declarative Pipeline, which runs every minute. Periodical execution may be configured with the triggers directive, that defines the automated ways in which the pipeline should be re-triggered. Our pipeline will communicate with Eureka server and metrics endpoints exposed by every microservice using Spring Boot Actuator.
The test service name is EXAMPLE-SERVICE, which is equal to value (big letters) of property spring.application.name defined inside application.yml file. The monitored metric is the number of HTTP listener threads running on Tomcat container. These threads are responsible for processing incoming HTTP requests.

pipeline {
    agent any
    triggers {
        cron('* * * * *')
    }
    environment {
        SERVICE_NAME = "EXAMPLE-SERVICE"
        METRICS_ENDPOINT = "/actuator/metrics/tomcat.threads.busy?tag=name:http-nio-auto-1"
        SHUTDOWN_ENDPOINT = "/actuator/shutdown"
    }
    stages { ... }
}

Integrating Jenkins pipeline with Eureka

The first stage of our pipeline is responsible for fetching list of services registered in service discovery server. Eureka exposes HTTP API with several endpoints. One of them is GET /eureka/apps/{serviceName}, which returns list of all instances of application with given name. We are saving the number of running instances and the URL of metrics endpoint of every single instance. These values would be accessed during next stages of pipeline.
Here’s the fragment of pipeline responsible for fetching list of running instances of application. The name of stage is Calculate. We use HTTP Request Plugin for HTTP connections.

stage('Calculate') {
	steps {
		script {
			def response = httpRequest "http://192.168.99.100:8761/eureka/apps/${env.SERVICE_NAME}"
			def app = printXml(response.content)
			def index = 0
			env["INSTANCE_COUNT"] = app.instance.size()
			app.instance.each {
				if (it.status == 'UP') {
					def address = "http://${it.ipAddr}:${it.port}"
					env["INSTANCE_${index++}"] = address 
				}
			}
		}
	}
}

@NonCPS
def printXml(String text) {
    return new XmlSlurper(false, false).parseText(text)
}

Here’s a sample response from Eureka API for our microservice. The response content type is XML.

spring-autoscaler-2

Integrating Jenkins pipeline with Spring Boot Actuator metrics

Spring Boot Actuator exposes endpoint with metrics, which allows to find metric by name and optionally by tag. In the fragment of pipeline visible below I’m trying to find the instance with metric below or above a defined threshold. If there is such an instance we stop the loop in order to proceed to the next stage, which performs scaling down or up. The ip addresses of running applications are taken from pipeline environment variable with prefix INSTANCE_, which has been saved in the previous stage.

stage('Metrics') {
	steps {
		script {
			def count = env.INSTANCE_COUNT
			for(def i=0; i<count; i++) {
				def ip = env["INSTANCE_${i}"] + env.METRICS_ENDPOINT
				if (ip == null)
					break;
				def response = httpRequest ip
				def objRes = printJson(response.content)
				env.SCALE_TYPE = returnScaleType(objRes)
				if (env.SCALE_TYPE != "NONE")
					break
			}
		}
	}
}

@NonCPS
def printJson(String text) {
    return new JsonSlurper().parseText(text)
}

def returnScaleType(objRes) {
def value = objRes.measurements[0].value
if (value.toInteger() > 100)
		return "UP"
else if (value.toInteger() < 20)
		return "DOWN"
else
		return "NONE"
}

Shutdown application instance

In the last stage of our pipeline we will shutdown the running instance or start new instance depending on the result saved in the previous stage. Shutdown may be easily performed by calling Spring Boot Actuator endpoint. In the following fragment of pipeline we pick the instance returned by Eureka as first. Then we send POST request to that ip address.
If we need to scale up our application we call another pipeline responsible for build fat JAR and launch it on our machine.

stage('Scaling') {
	steps {
		script {
			if (env.SCALE_TYPE == 'DOWN') {
				def ip = env["INSTANCE_0"] + env.SHUTDOWN_ENDPOINT
				httpRequest url:ip, contentType:'APPLICATION_JSON', httpMode:'POST'
			} else if (env.SCALE_TYPE == 'UP') {
				build job:'spring-boot-run-pipeline'
			}
			currentBuild.description = env.SCALE_TYPE
		}
	}
}

Here’s a full definition of our pipeline spring-boot-run-pipeline responsible for starting new instance of application. It clones the repository with application source code, builds binaries using Maven commands, and finally runs the application using java -jar command passing address of Eureka server as a parameter.

pipeline {
    agent any
    tools {
        maven 'M3'
    }
    stages {
        stage('Checkout') {
            steps {
                git url: 'https://github.com/piomin/sample-spring-boot-autoscaler.git', credentialsId: 'github-piomin', branch: 'master'
            }
        }
        stage('Build') {
            steps {
                dir('example-service') {
                    sh 'mvn clean package'
                }
            }
        }
        stage('Run') {
            steps {
                dir('example-service') {
                    sh 'nohup java -jar -DEUREKA_URL=http://192.168.99.100:8761/eureka target/example-service-1.0-SNAPSHOT.jar 1>/dev/null 2>logs/runlog &'
                }
            }
        }
    }
}

Remote extension

The algorithm discussed in the previous sections will work fine only for microservices launched on the single machine. If we would like to extend it to work with many machines, we will have to modify our architecture as shown below. Each machine has Jenkins agent running and communicating with Jenkins master. If we would like to start new instance of microservices on the selected machine, we have to run pipeline using agent running on that machine. This agent is responsible only for building application from source code and launching it on the target machine. The shutdown of instance is still performed just by calling HTTP endpoint.

spring-autoscaler-3

You can find more information about running Jenkins agents and connecting them with Jenkins master via JNLP protocol in my article Jenkins nodes on Docker containers. Assuming we have successfully launched some agents on the target machines we need to parametrize our pipelines in order to be able to select agent (and therefore the target machine) dynamically.
When we are scaling up our application we have to pass agent label to the downstream pipeline.

build job:'spring-boot-run-pipeline', parameters:[string(name: 'agent', value:"slave-1")]

The calling pipeline will be ran by agent labelled with given parameter.

pipeline {
    agent {
        label "${params.agent}"
    }
    stages { ... }
}

If we have more than one agent connected to the master node we can map their addresses into the labels. Thanks to that you would be able to map IP address of microservice instance fetched from Eureka to the target machine with Jenkins agent.

pipeline {
    agent any
    triggers {
        cron('* * * * *')
    }
    environment {
        SERVICE_NAME = "EXAMPLE-SERVICE"
        METRICS_ENDPOINT = "/actuator/metrics/tomcat.threads.busy?tag=name:http-nio-auto-1"
        SHUTDOWN_ENDPOINT = "/actuator/shutdown"
        AGENT_192.168.99.102 = "slave-1"
        AGENT_192.168.99.103 = "slave-2"
    }
    stages { ... }
}

Summary

In this article I have demonstrated how to use Spring Boot Actuator metrics in order to scale up/scale down your Spring Boot application. Using basic mechanisms provided by Spring Boot together with Spring Cloud Netflix Eureka and Jenkins you can implement auto-scaling for your applications without getting any other third-party tools. The case described in this article assumes using Jenkins agents on the remote machines to launch there new instance of application, but you may as well use a tool like Ansible for that. If you would decide to run Ansible playbooks from Jenkins you will not have to launch Jenkins agents on remote machines. The source code with sample applications is available on GitHub: https://github.com/piomin/sample-spring-boot-autoscaler.git.

Advertisements

Integration tests on OpenShift using Arquillian Cube and Istio

Building integration tests for applications deployed on Kubernetes/OpenShift platforms seems to be quite a big challenge. With Arquillian Cube, an Arquillian extension for managing Docker containers, it is not complicated. Kubernetes extension, being a part of Arquillian Cube, helps you write and run integration tests for your Kubernetes/Openshift application. It is responsible for creating and managing temporary namespace for your tests, applying all Kubernetes resources required to setup your environment and once everything is ready it will just run defined integration tests.
The one very good information related to Arquillian Cube is that it supports Istio framework. You can apply Istio resources before executing tests. One of the most important features of Istio is an ability to control of traffic behavior with rich routing rules, retries, delays, failovers, and fault injection. It allows you to test some unexpected situations during network communication between microservices like server errors or timeouts.
If you would like to run some tests using Istio resources on Minishift you should first install it on your platform. To do that you need to change some privileges for your OpenShift user. Let’s do that.

1. Enabling Istio on Minishift

Istio requires some high-level privileges to be able to run on OpenShift. To add those privileges to the current user we need to login as an user with cluster admin role. First, we should enable admin-user addon on Minishift by executing the following command.

$ minishift addons enable admin-user

After that you would be able to login as system:admin user, which has cluster-admin role. With this user you can also add cluster-admin role to other users, for example admin. Let’s do that.

$ oc login -u system:admin
$ oc adm policy add-cluster-role-to-user cluster-admin admin
$ oc login -u admin -p admin

Now, let’s create new project dedicated especially for Istio and then add some required privileges.

$ oc new-project istio-system
$ oc adm policy add-scc-to-user anyuid -z istio-ingress-service-account -n istio-system
$ oc adm policy add-scc-to-user anyuid -z default -n istio-system
$ oc adm policy add-scc-to-user anyuid -z prometheus -n istio-system
$ oc adm policy add-scc-to-user anyuid -z istio-egressgateway-service-account -n istio-system
$ oc adm policy add-scc-to-user anyuid -z istio-citadel-service-account -n istio-system
$ oc adm policy add-scc-to-user anyuid -z istio-ingressgateway-service-account -n istio-system
$ oc adm policy add-scc-to-user anyuid -z istio-cleanup-old-ca-service-account -n istio-system
$ oc adm policy add-scc-to-user anyuid -z istio-mixer-post-install-account -n istio-system
$ oc adm policy add-scc-to-user anyuid -z istio-mixer-service-account -n istio-system
$ oc adm policy add-scc-to-user anyuid -z istio-pilot-service-account -n istio-system
$ oc adm policy add-scc-to-user anyuid -z istio-sidecar-injector-service-account -n istio-system
$ oc adm policy add-scc-to-user anyuid -z istio-galley-service-account -n istio-system
$ oc adm policy add-scc-to-user privileged -z default -n myproject

Finally, we may proceed to Istio components installation. I downloaded the current newest version of Istio – 1.0.1. Installation file is available under install/kubernetes directory. You just have to apply it to your Minishift instance by calling oc apply command.

$ oc apply -f install/kubernetes/istio-demo.yaml

2. Enabling Istio for Arquillian Cube

I have already described how to use Arquillian Cube to run tests with OpenShift in the article Testing microservices on OpenShift using Arquillian Cube. In comparison with the sample described in that article we need to include dependency responsible for enabling Istio features.

<dependency>
	<groupId>org.arquillian.cube</groupId>
	<artifactId>arquillian-cube-istio-kubernetes</artifactId>
	<version>1.17.1</version>
	<scope>test</scope>
</dependency>

Now, we can use @IstioResource annotation to apply Istio resources into OpenShift cluster or IstioAssistant bean to be able to use some additional methods for adding, removing resources programmatically or polling an availability of URLs.
Let’s take a look on the following JUnit test class using Arquillian Cube with Istio support. In addition to the standard test created for running on OpenShift instance I have added Istio resource file customer-to-account-route.yaml. Then I have invoked method await provided by IstioAssistant. First test test1CustomerRoute creates new customer, so it needs to wait until customer-route is deployed on OpenShift. The next test test2AccountRoute adds account for the newly created customer, so it needs to wait until account-route is deployed on OpenShift. Finally, the test test3GetCustomerWithAccounts is ran, which calls the method responsible for finding customer by id with list of accounts. In that case customer-service calls method endpoint by account-service. As you have probably find out the last line of that test method contains an assertion to empty list of accounts: Assert.assertTrue(c.getAccounts().isEmpty()). Why? We will simulate the timeout in communication between customer-service and account-service using Istio rules.

@Category(RequiresOpenshift.class)
@RequiresOpenshift
@Templates(templates = {
        @Template(url = "classpath:account-deployment.yaml"),
        @Template(url = "classpath:deployment.yaml")
})
@RunWith(ArquillianConditionalRunner.class)
@IstioResource("classpath:customer-to-account-route.yaml")
@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class IstioRuleTest {

    private static final Logger LOGGER = LoggerFactory.getLogger(IstioRuleTest.class);
    private static String id;

    @ArquillianResource
    private IstioAssistant istioAssistant;

    @RouteURL(value = "customer-route", path = "/customer")
    private URL customerUrl;
    @RouteURL(value = "account-route", path = "/account")
    private URL accountUrl;

    @Test
    public void test1CustomerRoute() {
        LOGGER.info("URL: {}", customerUrl);
        istioAssistant.await(customerUrl, r -> r.isSuccessful());
        LOGGER.info("URL ready. Proceeding to the test");
        OkHttpClient httpClient = new OkHttpClient();
        RequestBody body = RequestBody.create(MediaType.parse("application/json"), "{\"name\":\"John Smith\", \"age\":33}");
        Request request = new Request.Builder().url(customerUrl).post(body).build();
        try {
            Response response = httpClient.newCall(request).execute();
            ResponseBody b = response.body();
            String json = b.string();
            LOGGER.info("Test: response={}", json);
            Assert.assertNotNull(b);
            Assert.assertEquals(200, response.code());
            Customer c = Json.decodeValue(json, Customer.class);
            this.id = c.getId();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    @Test
    public  void test2AccountRoute() {
        LOGGER.info("Route URL: {}", accountUrl);
        istioAssistant.await(accountUrl, r -> r.isSuccessful());
        LOGGER.info("URL ready. Proceeding to the test");
        OkHttpClient httpClient = new OkHttpClient();
        RequestBody body = RequestBody.create(MediaType.parse("application/json"), "{\"number\":\"01234567890\", \"balance\":10000, \"customerId\":\"" + this.id + "\"}");
        Request request = new Request.Builder().url(accountUrl).post(body).build();
        try {
            Response response = httpClient.newCall(request).execute();
            ResponseBody b = response.body();
            String json = b.string();
            LOGGER.info("Test: response={}", json);
            Assert.assertNotNull(b);
            Assert.assertEquals(200, response.code());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    @Test
    public void test3GetCustomerWithAccounts() {
        String url = customerUrl + "/" + id;
        LOGGER.info("Calling URL: {}", customerUrl);
        OkHttpClient httpClient = new OkHttpClient();
        Request request = new Request.Builder().url(url).get().build();
        try {
            Response response = httpClient.newCall(request).execute();
            String json = response.body().string();
            LOGGER.info("Test: response={}", json);
            Assert.assertNotNull(response.body());
            Assert.assertEquals(200, response.code());
            Customer c = Json.decodeValue(json, Customer.class);
            Assert.assertTrue(c.getAccounts().isEmpty());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

}

3. Creating Istio rules

On of the interesting features provided by Istio is an availability of injecting faults to the route rules. we can specify one or more faults to inject while forwarding HTTP requests to the rule’s corresponding request destination. The faults can be either delays or aborts. We can define a percentage level of error using percent field for the both types of fault. In the following Istio resource I have defines 2 seconds delay for every single request sent to account-service.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: account-service
spec:
  hosts:
    - account-service
  http:
  - fault:
      delay:
        fixedDelay: 2s
        percent: 100
    route:
    - destination:
        host: account-service
        subset: v1

Besides VirtualService we also need to define DestinationRule for account-service. It is really simple – we have just define version label of the target service.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: account-service
spec:
  host: account-service
  subsets:
  - name: v1
    labels:
      version: v1

Before running the test we should also modify OpenShift deployment templates of our sample applications. We need to inject some Istio resources into the pods definition using istioctl kube-inject command as shown below.

$ istioctl kube-inject -f deployment.yaml -o customer-deployment-istio.yaml
$ istioctl kube-inject -f account-deployment.yaml -o account-deployment-istio.yaml

Finally, we may rewrite generated files into OpenShift templates. Here’s the fragment of Openshift template containing DeploymentConfig definition for account-service.

kind: Template
apiVersion: v1
metadata:
  name: account-template
objects:
  - kind: DeploymentConfig
    apiVersion: v1
    metadata:
      name: account-service
      labels:
        app: account-service
        name: account-service
        version: v1
    spec:
      template:
        metadata:
          annotations:
            sidecar.istio.io/status: '{"version":"364ad47b562167c46c2d316a42629e370940f3c05a9b99ccfe04d9f2bf5af84d","initContainers":["istio-init"],"containers":["istio-proxy"],"volumes":["istio-envoy","istio-certs"],"imagePullSecrets":null}'
          name: account-service
          labels:
            app: account-service
            name: account-service
            version: v1
        spec:
          containers:
          - env:
            - name: DATABASE_NAME
              valueFrom:
                secretKeyRef:
                  key: database-name
                  name: mongodb
            - name: DATABASE_USER
              valueFrom:
                secretKeyRef:
                  key: database-user
                  name: mongodb
            - name: DATABASE_PASSWORD
              valueFrom:
                secretKeyRef:
                  key: database-password
                  name: mongodb
            image: piomin/account-vertx-service
            name: account-vertx-service
            ports:
            - containerPort: 8095
            resources: {}
          - args:
            - proxy
            - sidecar
            - --configPath
            - /etc/istio/proxy
            - --binaryPath
            - /usr/local/bin/envoy
            - --serviceCluster
            - account-service
            - --drainDuration
            - 45s
            - --parentShutdownDuration
            - 1m0s
            - --discoveryAddress
            - istio-pilot.istio-system:15007
            - --discoveryRefreshDelay
            - 1s
            - --zipkinAddress
            - zipkin.istio-system:9411
            - --connectTimeout
            - 10s
            - --statsdUdpAddress
            - istio-statsd-prom-bridge.istio-system:9125
            - --proxyAdminPort
            - "15000"
            - --controlPlaneAuthPolicy
            - NONE
            env:
            - name: POD_NAME
              valueFrom:
                fieldRef:
                  fieldPath: metadata.name
            - name: POD_NAMESPACE
              valueFrom:
                fieldRef:
                  fieldPath: metadata.namespace
            - name: INSTANCE_IP
              valueFrom:
                fieldRef:
                  fieldPath: status.podIP
            - name: ISTIO_META_POD_NAME
              valueFrom:
                fieldRef:
                  fieldPath: metadata.name
            - name: ISTIO_META_INTERCEPTION_MODE
              value: REDIRECT
            image: gcr.io/istio-release/proxyv2:1.0.1
            imagePullPolicy: IfNotPresent
            name: istio-proxy
            resources:
              requests:
                cpu: 10m
            securityContext:
              readOnlyRootFilesystem: true
              runAsUser: 1337
            volumeMounts:
            - mountPath: /etc/istio/proxy
              name: istio-envoy
            - mountPath: /etc/certs/
              name: istio-certs
              readOnly: true
          initContainers:
          - args:
            - -p
            - "15001"
            - -u
            - "1337"
            - -m
            - REDIRECT
            - -i
            - '*'
            - -x
            - ""
            - -b
            - 8095,
            - -d
            - ""
            image: gcr.io/istio-release/proxy_init:1.0.1
            imagePullPolicy: IfNotPresent
            name: istio-init
            resources: {}
            securityContext:
              capabilities:
                add:
                - NET_ADMIN
          volumes:
          - emptyDir:
              medium: Memory
            name: istio-envoy
          - name: istio-certs
            secret:
              optional: true
              secretName: istio.default

4. Building applications

The sample applications are implemented using Eclipse Vert.x framework. They use Mongo database for storing data. The connection settings are injected into pods using Kubernetes Secrets.

public class MongoVerticle extends AbstractVerticle {

	private static final Logger LOGGER = LoggerFactory.getLogger(MongoVerticle.class);

	@Override
	public void start() throws Exception {
		ConfigStoreOptions envStore = new ConfigStoreOptions()
				.setType("env")
				.setConfig(new JsonObject().put("keys", new JsonArray().add("DATABASE_USER").add("DATABASE_PASSWORD").add("DATABASE_NAME")));
		ConfigRetrieverOptions options = new ConfigRetrieverOptions().addStore(envStore);
		ConfigRetriever retriever = ConfigRetriever.create(vertx, options);
		retriever.getConfig(r -> {
			String user = r.result().getString("DATABASE_USER");
			String password = r.result().getString("DATABASE_PASSWORD");
			String db = r.result().getString("DATABASE_NAME");
			JsonObject config = new JsonObject();
			LOGGER.info("Connecting {} using {}/{}", db, user, password);
			config.put("connection_string", "mongodb://" + user + ":" + password + "@mongodb/" + db);
			final MongoClient client = MongoClient.createShared(vertx, config);
			final CustomerRepository service = new CustomerRepositoryImpl(client);
			ProxyHelper.registerService(CustomerRepository.class, vertx, service, "customer-service");	
		});
	}
}

MongoDB should be started on OpenShift before starting any applications, which connect to it. To achieve it we should insert Mongo deployment resource into Arquillian configuration file as env.config.resource.name field.
The configuration of Arquillian Cube is visible below. We will use an existing namespace myproject, which has already granted the required privileges (see Step 1). We also need to pass authentication token of user admin. You can collect it using command oc whoami -t after login to OpenShift cluster.

<extension qualifier="openshift">
	<property name="namespace.use.current">true</property>
	<property name="namespace.use.existing">myproject</property>
	<property name="kubernetes.master">https://192.168.99.100:8443</property>
	<property name="cube.auth.token">TYYccw6pfn7TXtH8bwhCyl2tppp5MBGq7UXenuZ0fZA</property>
	<property name="env.config.resource.name">mongo-deployment.yaml</property>
</extension>

The communication between customer-service and account-service is realized by Vert.x WebClient. We will set read timeout for the client to 1 second. Because Istio injects 2 seconds delay into the route, the communication is going to end with timeout.

public class AccountClient {

	private static final Logger LOGGER = LoggerFactory.getLogger(AccountClient.class);
	private Vertx vertx;

	public AccountClient(Vertx vertx) {
		this.vertx = vertx;
	}
	
	public AccountClient findCustomerAccounts(String customerId, Handler<AsyncResult<List>> resultHandler) {
		WebClient client = WebClient.create(vertx);
		client.get(8095, "account-service", "/account/customer/" + customerId).timeout(1000).send(res2 -> {
			if (res2.succeeded()) {
				LOGGER.info("Response: {}", res2.result().bodyAsString());
				List accounts = res2.result().bodyAsJsonArray().stream().map(it -> Json.decodeValue(it.toString(), Account.class)).collect(Collectors.toList());
				resultHandler.handle(Future.succeededFuture(accounts));
			} else {
				resultHandler.handle(Future.succeededFuture(new ArrayList()));
			}
		});
		return this;
	}
}

The full code of sample applications is available on GitHub in the repository https://github.com/piomin/sample-vertx-kubernetes/tree/openshift-istio-tests.

5. Running tests

You can the tests during Maven build or just using your IDE. As the first test1CustomerRoute test is executed. It adds new customer and save generated id for two next tests.

arquillian-istio-3

The next test is test2AccountRoute. It adds an account for the customer created during previous test.

arquillian-istio-2

Finally, the test responsible for verifying communication between microservices is running. It verifies if the list of accounts is empty, what is a result of timeout in communication with account-service.

arquillian-istio-1

Chaos Monkey for Spring Boot Microservices

How many of you have never encountered a crash or a failure of your systems in production environment? Certainly, each one of you, sooner or later, has experienced it. If we are not able to avoid a failure, the solution seems to be maintaining our system in the state of permanent failure. This concept underpins the tool invented by Netflix to test the resilience of its IT infrastructure – Chaos Monkey. A few days ago I came across the solution, based on the idea behind Netflix’s tool, designed to test Spring Boot applications. Such a library has been implemented by Codecentric. Until now, I recognize them only as the authors of other interesting solution dedicated for Spring Boot ecosystem – Spring Boot Admin. I have already described this library in one of my previous articles Monitoring Microservices With Spring Boot Admin (https://piotrminkowski.wordpress.com/2017/06/26/monitoring-microservices-with-spring-boot-admin).
Today I’m going to show you how to include Codecentric’s Chaos Monkey in your Spring Boot application, and then implement chaos engineering in sample system consists of some microservices. The Chaos Monkey library can be used together with Spring Boot 2.0, and the current release version of it is 1.0.1. However, I’ll implement the sample using version 2.0.0-SNAPSHOT, because it has some new interesting features not available in earlier versions of this library. In order to be able to download SNAPSHOT version of Codecentric’s Chaos Monkey library you have to remember about including Maven repository https://oss.sonatype.org/content/repositories/snapshots to your repositories in pom.xml.

1. Enable Chaos Monkey for an application

There are two required steps for enabling Chaos Monkey for Spring Boot application. First, let’s add library chaos-monkey-spring-boot to the project’s dependencies.

<dependency>
	<groupId>de.codecentric</groupId>
	<artifactId>chaos-monkey-spring-boot</artifactId>
	<version>2.0.0-SNAPSHOT</version>
</dependency>

Then, we should activate profile chaos-monkey on application startup.

$ java -jar target/order-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey

2. Sample system architecture

Our sample system consists of three microservices, each started in two instances, and a service discovery server. Microservices registers themselves against a discovery server, and communicates with each other through HTTP API. Chaos Monkey library is included to every single instance of all running microservices, but not to the discovery server. Here’s the diagram that illustrates the architecture of our sample system.

chaos

The source code of sample applications is available on GitHub in repository sample-spring-chaosmonkey (https://github.com/piomin/sample-spring-chaosmonkey.git). After cloning this repository and building it using mnv clean install command, you should first run discovery-service. Then run two instances of every microservice on different ports by setting -Dserver.port property with an appropriate number. Here’s a set of my running commands.

$ java -jar target/discovery-service-1.0-SNAPSHOT.jar
$ java -jar target/order-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey
$ java -jar -Dserver.port=9091 target/order-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey
$ java -jar target/product-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey
$ java -jar -Dserver.port=9092 target/product-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey
$ java -jar target/customer-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey
$ java -jar -Dserver.port=9093 target/customer-service-1.0-SNAPSHOT.jar --spring.profiles.active=chaos-monkey

3. Process configuration

In version 2.0.0-SNAPSHOT of chaos-monkey-spring-boot library Chaos Monkey is by default enabled for applications that include it. You may disable it using property chaos.monkey.enabled. However, the only assault which is enabled by default is latency. This type of assault adds a random delay to the requests processed by the application in the range determined by properties chaos.monkey.assaults.latencyRangeStart and chaos.monkey.assaults.latencyRangeEnd. The number of attacked requests is dependent of property chaos.monkey.assaults.level, where 1 means each request and 10 means each 10th request. We can also enable exception and appKiller assault for our application. For simplicity, I set the configuration for all the microservices. Let’s take a look on settings provided in application.yml file.

chaos:
  monkey:
    assaults:
	  level: 8
	  latencyRangeStart: 1000
	  latencyRangeEnd: 10000
	  exceptionsActive: true
	  killApplicationActive: true
	watcher:
	  repository: true
      restController: true

In theory, the configuration visible above should enable all three available types of assaults. However, if you enable latency and exceptions, killApplication will never happen. Also, if you enable both latency and exceptions, all the requests send to application will be attacked, no matter which level is set with chaos.monkey.assaults.level property. It is important to remember about activating restController watcher, which is disabled by default.

4. Enable Spring Boot Actuator endpoints

Codecentric implements a new feature in the version 2.0 of their Chaos Monkey library – the endpoint for Spring Boot Actuator. To enable it for our applications we have to activate it following actuator convention – by setting property management.endpoint.chaosmonkey.enabled to true. Additionally, beginning from version 2.0 of Spring Boot we have to expose that HTTP endpoint to be available after application startup.

management:
  endpoint:
    chaosmonkey:
      enabled: true
  endpoints:
    web:
      exposure:
        include: health,info,chaosmonkey

The chaos-monkey-spring-boot provides several endpoints allowing you to check out and modify configuration. You can use method GET /chaosmonkey to fetch the whole configuration of library. Yo may also disable chaos monkey after starting application by calling method POST /chaosmonkey/disable. The full list of available endpoints is listed here: https://codecentric.github.io/chaos-monkey-spring-boot/2.0.0-SNAPSHOT/#endpoints.

5. Running applications

All the sample microservices stores data in MySQL. So, the first step is to run MySQL database locally using its Docker image. The Docker command visible below also creates database and user with password.

$ docker run -d --name mysql -e MYSQL_DATABASE=chaos -e MYSQL_USER=chaos -e MYSQL_PASSWORD=chaos123 -e MYSQL_ROOT_PASSWORD=123456 -p 33306:3306 mysql

After running all the sample applications, where all microservices are multiplied in two instances listening on different ports, our environment looks like in the figure below.

chaos-4

You will see the following information in your logs during application boot.

chaos-5

We may check out Chaos Monkey configuration settings for every running instance of application by calling the following actuator endpoint.

chaos-3

6. Testing the system

For the testing purposes, I used popular performance testing library – Gatling. It creates 20 simultaneous threads, which calls POST /orders and GET /order/{id} methods exposed by order-service via API gateway 500 times per each thread.

class ApiGatlingSimulationTest extends Simulation {

  val scn = scenario("AddAndFindOrders").repeat(500, "n") {
        exec(
          http("AddOrder-API")
            .post("http://localhost:8090/order-service/orders")
            .header("Content-Type", "application/json")
            .body(StringBody("""{"productId":""" + Random.nextInt(20) + ""","customerId":""" + Random.nextInt(20) + ""","productsCount":1,"price":1000,"status":"NEW"}"""))
            .check(status.is(200),  jsonPath("$.id").saveAs("orderId"))
        ).pause(Duration.apply(5, TimeUnit.MILLISECONDS))
        .
        exec(
          http("GetOrder-API")
            .get("http://localhost:8090/order-service/orders/${orderId}")
            .check(status.is(200))
        )
  }

  setUp(scn.inject(atOnceUsers(20))).maxDuration(FiniteDuration.apply(10, "minutes"))

}

POST endpoint is implemented inside OrderController in add(...) method. It calls find methods exposed by customer-service and product-service using OpenFeign clients. If customer has a sufficient funds and there are still products in stock, it accepts the order and performs changes for customer and product using PUT methods. Here’s the implementation of two methods tested by Gatling performance test.

@RestController
@RequestMapping("/orders")
public class OrderController {

	@Autowired
	OrderRepository repository;
	@Autowired
	CustomerClient customerClient;
	@Autowired
	ProductClient productClient;

	@PostMapping
	public Order add(@RequestBody Order order) {
		Product product = productClient.findById(order.getProductId());
		Customer customer = customerClient.findById(order.getCustomerId());
		int totalPrice = order.getProductsCount() * product.getPrice();
		if (customer != null && customer.getAvailableFunds() >= totalPrice && product.getCount() >= order.getProductsCount()) {
			order.setPrice(totalPrice);
			order.setStatus(OrderStatus.ACCEPTED);
			product.setCount(product.getCount() - order.getProductsCount());
			productClient.update(product);
			customer.setAvailableFunds(customer.getAvailableFunds() - totalPrice);
			customerClient.update(customer);
		} else {
			order.setStatus(OrderStatus.REJECTED);
		}
		return repository.save(order);
	}

	@GetMapping("/{id}")
	public Order findById(@PathVariable("id") Integer id) {
		Optional order = repository.findById(id);
		if (order.isPresent()) {
			Order o = order.get();
			Product product = productClient.findById(o.getProductId());
			o.setProductName(product.getName());
			Customer customer = customerClient.findById(o.getCustomerId());
			o.setCustomerName(customer.getName());
			return o;
		} else {
			return null;
		}
	}

	// ...

}

Chaos Monkey sets random latency between 1000 and 10000 milliseconds (as shown in the step 3). It is important to change default timeouts for Feign and Ribbon clients before starting a test. I decided to set readTimeout to 5000 milliseconds. It will cause some delayed requests to be timed out, while some will succeeded (around 50%-50%). Here’s timeouts configuration for Feign client.

feign:
  client:
    config:
      default:
        connectTimeout: 5000
        readTimeout: 5000
  hystrix:
    enabled: false

Here’s Ribbon client timeouts configuration for API gateway. We have also changed Hystrix settings to disable circuit breaker for Zuul.

ribbon:
  ConnectTimeout: 5000
  ReadTimeout: 5000

hystrix:
  command:
    default:
      execution:
        isolation:
          thread:
            timeoutInMilliseconds: 15000
      fallback:
        enabled: false
      circuitBreaker:
        enabled: false

To launch Gatling performance test go to performance-test directory and run gradle loadTest command. Here’s a result generated for the settings latency assaults. Of course, we can change this result by manipulating Chaos Monkey latency values or Ribbon and Feign timeout values.

chaos-5

Here’s Gatling graph with average response times. Results do not look good. However, we should remember that a single POST method from order-service calls two methods exposed by product-service and two methods exposed by customer-service.

chaos-6

Here’s the next Gatling result graph – this time it illustrates timeline with error and success responses. All HTML reports generated by Gatling during performance test are available under directory performance-test/build/gatling-results

chaos-7