Secure Spring Cloud Microservices with Vault and Nomad

One of the significant topics related to microservices security is managing and protecting sensitive data like tokens, passwords or certificates used by your application. As a developer you probably often implement a software that connects with external databases, message brokers or just the other applications. How do you store the credentials used by your application? To be honest, most of the software code I have seen in my life just stored a sensitive data as a plain text in the configuration files. Thanks to that, I could always be able to retrieve the credentials to every database I needed at a given time just by looking at the application source code. Of course, we can always encrypt sensitive data, but if we working with many microservices having separated databases I may not be very comfortable solution.

Today I’m going to show you how to integrate you Spring Boot application with HashiCorp’s Vault in order to store your sensitive data properly. The first good news is that you don’t have to create any keys or certificates for encryption and decryption, because Vault will do it in your place. In this article in a few areas I’ll refer to my previous article about HashiCorp’s solutions Deploying Spring Cloud Microservices on HashiCorp’s Nomad. Now, as then, I also deploy my sample applications on Nomad to take an advantage of build-in integration between those two very interesting HashiCorp’s tools. We will also use another HashiCorp’s solution for service discovery in inter-service communication – Consul. It’s also worth mentioning that Spring Cloud provides a dedicated project for integration with Vault – Spring Cloud Vault.

Architecture

The sample presented in this article will consists of two applications deployed on HashiCorp’s Nomad callme-service and caller-service. Microservice caller-service is calling endpoint exposed by callme-service. An inter-service communication is performed using the name of target application registered in Consul server. Microservice callme-service will store the history of all interactions triggered by caller-service in database. The credentials to database are stored on Vault. Nomad is integrated with Vault and store root token, which is not visible by the applications. The architecture of described solution is visible on the following picture.

vault-1

The current sample is pretty similar to the sample presented in my article Deploying Spring Cloud Microservices on Hashicorp’s Nomad. It is also available in the same repository on GitHub sample-nomad-java-service, but in the different branch vault. The current sample add an integration with PostgreSQL and Vault server for managing credentials to database.

1. Running Vault

We will run Vault inside Docker container in a development mode. Server in development mode does not require any further setup, it is ready to use just after startup. It provides in-memory encrypted storage and unsecure (HTTP) connection, which is not a problem for a demo purposes. We can override default server IP address and listening port by setting environment property VAULT_DEV_LISTEN_ADDRESS, but we won’t do that. After startup our instance of Vault is available on port 8200. We can use admin web console, which is for me available under address http://192.168.99.100:8200. The current version of Vault is 1.0.0.

$ docker run --cap-add=IPC_LOCK -d --name vault -p 8200:8200 vault

It is possible to login using different methods, but the most suitable way for us is through a token. To do that we have to display container logs using command docker logs vault, and then copy Root Token as shown below.

vault-1

Now you can login to Vault web console.

vault-2

2. Integration with Postgres database

In Vault we can create Secret Engine that connects to other services and generates dynamic credentials on demand. Secrets engines are available under path. There is the dedicated engine for the various databases, for example PostgreSQL. Before activating such an engine we should run an instance of Postgres database. This time we will also use Docker container. It is possible to set login and password to the database using environment variables.

$ docker run -d --name postgres -p 5432:5432 -e POSTGRES_PASSWORD=postgres123456 -e POSTGRES_USER=postgres postgres

After starting database, we may proceed to the engine configuration in Vault web console. First, let’s create our first secret engine. We may choose between some different types of engine. The right choice for now is Databases.

vault-3

You can apply a new configuration to Vault using vault command or by HTTP API. Vault web console provides terminal for running CLI commands, but it could be problematic in some cases. For example, I have a problem with escaping strings in some SQL commands, and therefore I had to add it using HTTP API. No matter which method you use, the next steps are the same. Following Vault documentation we first need to configure plugin for PostgreSQL database and then provide connection settings and credentials.

$ vault write database/config/postgres plugin_name=postgresql-database-plugin allowed_roles="default" connection_url="postgresql://{{username}}:{{password}}@192.168.99.100:5432?sslmode=disable" username="postgres" password="postgres123456"

Alternatively, you can perform the same action using HTTP API method. To authenticate against Vault we need to add header X-Vault-Token with root token. I have disabled SSL for connection with Postgres by setting sslmode=disable. There is only one role allowed to use this plugin: default. Now, let’s configure that role.

$ curl --header "X-Vault-Token: s.44GiacPqbV78fNbmoWK4mdYq" --request POST --data '{"plugin_name": "postgresql-database-plugin","allowed_roles": "default","connection_url": "postgresql://{{username}}:{{password}}@localhost:5432?sslmode=disable","username": "postgres","password": "postgres123456"}' http://192.168.99.100:8200/v1/database/config/postgres

The role can created either with CLI or with HTTP API. The name of role should the same as the name passed in field allowed_roles in the previous step. We also have to set target database name and SQL statement that creates user with privileges.

$ vault write database/roles/default db_name=postgres creation_statements="CREATE ROLE \"{{name}}\" WITH LOGIN PASSWORD '{{password}}' VALID UNTIL '{{expiration}}';GRANT SELECT, UPDATE, INSERT ON ALL TABLES IN SCHEMA public TO \"{{name}}\";GRANT USAGE,  SELECT ON ALL SEQUENCES IN SCHEMA public TO \"{{name}}\";" default_ttl="1h" max_ttl="24h"

Alternatively you can call the following HTTP API endpoint.

$ curl --header "X-Vault-Token: s.44GiacPqbV78fNbmoWK4mdYq" --request POST --data '{"db_name":"postgres", "creation_statements": ["CREATE ROLE \"{{name}}\" WITH LOGIN PASSWORD '{{password}}' VALID UNTIL '{{expiration}}';GRANT SELECT, UPDATE, INSERT ON ALL TABLES IN SCHEMA public TO \"{{name}}\";GRANT USAGE, SELECT ON ALL SEQUENCES IN SCHEMA public TO \"{{name}}\";"]}' http://192.168.99.100:8200/v1/database/roles/default

And it’s all. Now, we can test our configuration using command with role’s name vault read database/creds/default as shown below. You can login to database using returned credentials. By default, they are valid for one hour.

vault-5

3. Enabling Spring Cloud Vault

We have succesfully configured secret engine that is responsible for creating user on Postgres. Now, we can proceed to the development and integrate our application with Vault. Fortunately, there is a project Spring Cloud Vault, which provides out-of-the-box integration with Vault database secret engines. The only thing we have to do is to include Spring Cloud Vault to our project and provide some configuration settings. Let’s start from setting Spring Cloud Release Train. We use the newest stable version Finchley.SR2.

<dependencyManagement>
	<dependencies>
		<dependency>
			<groupId>org.springframework.cloud</groupId>
			<artifactId>spring-cloud-dependencies</artifactId>
			<version>Finchley.SR2</version>
			<type>pom</type>
			<scope>import</scope>
		</dependency>
	</dependencies>
</dependencyManagement>

We have to include two dependencies to our pom.xml. Starter spring-cloud-starter-vault-config is responsible for loading configuration from Vault and spring-cloud-vault-config-databases responsible for integration with secret engines for databases.

<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-starter-vault-config</artifactId>
</dependency>
<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-vault-config-databases</artifactId>
</dependency>

The sample application also connects to Postgres database, so we will include the following dependencies.

<dependency>
	<groupId>org.springframework.boot</groupId>
	<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
	<groupId>org.postgresql</groupId>
	<artifactId>postgresql</artifactId>
	<version>42.2.5</version>
</dependency>

The only thing we have to do is to configure integration with Vault via Spring Cloud Vault. The following configuration settings should be placed in bootstrap.yml (no application.yml). Because we run our application on Nomad server, we use the port number dynamically set by Nomad available under environment property NOMAD_HOST_PORT_http and secret token from Vault available under environment property VAULT_TOKEN.

server:
  port: ${NOMAD_HOST_PORT_http:8091}

spring:
  application:
    name: callme-service
  cloud:
    vault:
      uri: http://192.168.99.100:8200
      token: ${VAULT_TOKEN}
      postgresql:
        enabled: true
        role: default
        backend: database
  datasource:
    url: jdbc:postgresql://192.168.99.100:5432/postgres

The important part of the configuration visible above is under the property spring.cloud.vault.postgresql. Following Spring Cloud documentation “Username and password are stored in spring.datasource.username and spring.datasource.password so using Spring Boot will pick up the generated credentials for your DataSource without further configuration”. Spring Cloud Vault is connecting with Vault, and then using role default (previously created on Vault) to generate new credentials to database. Those credentials are injected into spring.datasource properties. Then, the application is connecting to database using injected credentials. Everything works fine. Now, let’s try to run our applications on Nomad.

4. Deploying apps on Nomad

Before starting Nomad node we should also run Consul using its Docker container. Here’s Docker command that starts single node Consul instance.

$ docker run -d --name consul -p 8500:8500 consul

After that we can configure connection settings to Consul and Vault in Nomad configuration. I have create the file nomad.conf. Nomad is authenticating itself against Vault using root token. Connection with Consul is not secured. Sometimes it is also required to set network interface name and total CPU on the machine for Nomad client. Most clients are able to determine it automatically, but it does not work for me.

client {
  network_interface = "Połączenie lokalne 4"
  cpu_total_compute = 10400
}

consul {
  address = "192.168.99.100:8500"
}

vault {
  enabled = true
  address = "http://192.168.99.100:8200"
  token = "s.6jhQ1WdcYrxpZmpa0RNd0LMw"
}

Let’s run Nomad in development mode passing configuration file location.

$ nomad agent -dev -config=nomad.conf

If everything works fine you should see the similar log on startup.

vault-6

Once we have succesfully started Nomad agent integrated with Consul and Vault, we can proceed to the applications deployment. First build the whole project with mvn clean install command. The next step is to prepare Nomad’s job descriptor file. For more details about Nomad deployment process and its descriptor file you can refer to my previous article about it (mentioned in the preface of this article). Descriptor file is available inside application GitHub under path callme-service/job.nomad for callme-service, and caller-service/job.nomad for caller-service.

job "callme-service" {
	datacenters = ["dc1"]
	type = "service"
	group "callme" {
		count = 2
		task "api" {
			driver = "java"
			config {
				jar_path    = "C:\\Users\\minkowp\\git\\sample-nomad-java-services-idea\\callme-service\\target\\callme-service-1.0.0-SNAPSHOT.jar"
				jvm_options = ["-Xmx256m", "-Xms128m"]
			}
			resources {
				cpu    = 500 # MHz
				memory = 300 # MB
				network {
					port "http" {}
				}
			}
			service {
				name = "callme-service"
				port = "http"
			}
			vault {
				policies = ["nomad"]
			}
		}
		restart {
			attempts = 1
		}
	}
}

You will have to change value of jar_path property with your path of application binaries. Before applying this deployment to Nomad we will have to add some additional configuration on Vault. When adding integration with Vault we have to pass the name of policies used for checking permissions. I set the policy with name nomad, which now has to created in Vault. Our application requires a permission for reading paths /secret/* and /database/* as shown below.

vault-7

Finally, we can deploy our application callme-service on Nomad by executing the following command.

$ nomad job run job.nomad

The similar descriptor file is available for caller-service, so we can also deploy it. All the microservice has been registered in Consul as shown below.

vault-8

Here are the list of registered instances of caller-service. As you can see on the picture below it is available under port 25816.

vault-9

You can also take a look on Nomad jobs view.

vault-10

Advertisements

Deploying Spring Cloud Microservices on Hashicorp’s Nomad

Nomad is a little less popular HashiCorp’s cloud product than Consul, Terraform or Vault. It is also not as popular as a competitive software like Kubernetes and Docker Swarm. However, it has its advantages. While Kubernetes is specifically focused on Docker, Nomad is more general purpose. It supports containerized Docker applications as well as simple applications delivered as an executable JAR files. Besides that, Nomad is architecturally much simpler. It is a single binary, both for clients and servers, and does not require any services for coordination or storage.

In this article I’m going to show you how to install, configure and use Nomad in order to run on it some microservices created in Spring Boot and Spring Cloud frameworks. Let’s move on.

Step 1. Installing and running Nomad

HashiCorp’s Nomad can be easily started on Windows. You just have to download it from the following site https://www.nomadproject.io/downloads.html, and then add nomad.exe file to your PATH. Now you are able to run Nomad commands from your command-line. Let’s begin from starting Nomad agent. For simplicity, we will run it in development mode (-dev). With this option it is acting both as a client and a server.  Here’s command that starts Nomad agent on my local machine.

nomad agent -dev -network-interface="WiFi" -consul-address=192.168.99.100:8500

Sometimes you could be required to pass selected network interface as a parameter. We also need to integrate agent node with Consul discovery for the purpose of inter-service communication discussed in the next part of this article. The most suitable way to run Consul on your local machine is through a Docker container. Here’s the command that launches single node Consul discovery server and exposes it on port 8500. If you run Docker on Windows it is probably available under address 192.168.99.100.

docker run -d --name consul -p 8500:8500 consul

Step 2. Creating job

Nomad is a tool for managing a cluster of machines and running applications on them. To run the application there we should first create job. Job is the primary configuration unit that users interact with when using Nomad. Job is a specification of tasks that should be ran by Nomad. The job consists of multiple groups, and each group may have multiple tasks.

There are some properties that has to be provided, for example datacenters. You should also set type parameter that indicates scheduler type. I set type service, which is designed for scheduling long lived services that should never go down, like an application exposing HTTP API.

Let’s take a look on Nomad’s job descriptor file. The most important elements of that configuration has been marked by the sequence numbers:

  1. Property count specifies the number of the task groups that should be running under this group. In practice it scales up number of instances of the service started by the task. Here, it has been set to 2.
  2. Property driver specifies the driver that should be used by Nomad clients to run the task. The driver name corresponds to a technology used for running the application. For example we can set docker, rkt for containerization solutions or java for executing Java applications packaged into a Java JAR file. Here, the property has been set to java.
  3. After settings the driver we should provide some configuration for this driver in the job spec. There are some options available for java driver. But I decided to set the absolute path to the downloaded JAR and some JVM options related to the memory limits.
  4. We may set some requirements for the task including memory, network, CPU, and more. Our task requires max 300 MB or RAM, and enables dynamic port allocation for the port labeled “http”.
  5. Now, it is required to point out very important thing. When the task is started, it is passed an additional environment variable named NOMAD_HOST_PORT_http which indicates the host port that the HTTP service is bound to. The suffix http relates to the label set for the port.
  6. Property service inside task specifies integrations with Consul for service discovery. Now, Nomad automatically registers a task with the provided name when a task is started and de-registers it when the task dies. As you probably remember, the port number is generated automatically by Nomad. However, I passed the label http to force Nomad to register in Consul with automatically generated port.
job "caller-service" {
	datacenters = ["dc1"]
	type = "service"
	group "caller" {
		count = 2 # (1)
		task "api" {
			driver = "java" # (2)
			config { # (3)
				jar_path    = "C:\\Users\\minkowp\\git\\sample-nomad-java-services\\caller-service\\target\\caller-service-1.0.0-SNAPSHOT.jar"
				jvm_options = ["-Xmx256m", "-Xms128m"]
			}
			resources { # (4)
				cpu    = 500
				memory = 300
				network {
					port "http" {} # (5)
				}
			}
			service { # (6)
				name = "caller-service"
				port = "http"
			}
		}
		restart {
			attempts = 1
		}
	}
}

Once we saved the content visible above as job.nomad file, we may apply it to the Nomad node by executing the following command.

nomad job run job.nomad

Step 3. Building sample microservices

Source code of sample applications is available on GitHub in my repository sample-nomad-java-services. There are two simple microservices callme-service and caller-service. I have already use that sample for in the previous articles for showing inter-service communication mechanism. Microservice callme-service does nothing more than exposing endpoint GET /callme/ping that displays service’s name and version.

@RestController
@RequestMapping("/callme")
public class CallmeController {

	private static final Logger LOGGER = LoggerFactory.getLogger(CallmeController.class);

	@Autowired
	BuildProperties buildProperties;

	@GetMapping("/ping")
	public String ping() {
		LOGGER.info("Ping: name={}, version={}", buildProperties.getName(), buildProperties.getVersion());
		return buildProperties.getName() + ":" + buildProperties.getVersion();
	}

}

Implementation of caller-service endpoint is a little bit more complicated. First we have to connect our service with Consul in order to fetch list of registered instances of callme-service. Because we use Spring Boot for creating sample microservices, the most suitable way to enable Consul client is through Spring Cloud Consul library.

<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-starter-consul-discovery</artifactId>
</dependency>

We should override auto-configured connection settings in application.yml. In addition to host and property we have also set spring.cloud.consul.discovery.register property to false. We don’t want discovery client to register application in Consul after startup, because it has been already performed by Nomad.

spring:
  application:
    name: caller-service
  cloud:
    consul:
      host: 192.168.99.100
      port: 8500
      discovery:
        register: false

Then we should enable Spring Cloud discovery client and RestTemplate load balancer in the main class of application.

@SpringBootApplication
@EnableDiscoveryClient
public class CallerApplication {

	public static void main(String[] args) {
		SpringApplication.run(CallerApplication.class, args);
	}

	@Bean
	@LoadBalanced
	RestTemplate restTemplate() {
		return new RestTemplate();
	}

}

Finally, we can implement method GET /caller/ping that call endpoint exposed by callme-service.

@RestController
@RequestMapping("/caller")
public class CallerController {

	private static final Logger LOGGER = LoggerFactory.getLogger(CallerController.class);

	@Autowired
	BuildProperties buildProperties;
	@Autowired
	RestTemplate restTemplate;

	@GetMapping("/ping")
	public String ping() {
		LOGGER.info("Ping: name={}, version={}", buildProperties.getName(), buildProperties.getVersion());
		String response = restTemplate.getForObject("http://callme-service/callme/ping", String.class);
		LOGGER.info("Calling: response={}", response);
		return buildProperties.getName() + ":" + buildProperties.getVersion() + ". Calling... " + response;
	}

}

As you probably remember the port of application is automatically generated by Nomad during task execution. It passes an additional environment variable named NOMAD_HOST_PORT_http to the application. Now, this environment variable should be configured inside application.yml file as the value of server.port property.

server:
  port: ${NOMAD_HOST_PORT_http:8090}

The last step is to build the whole project sample-nomad-java-services with mvn clean install command.

Step 4. Using Nomad web console

During two previous steps we have created, build and deployed our sample applications on Nomad. Now, we should verify the installation. We can do it using CLI or by visiting web console provided by nomad. Web console is available under address http://localhost:4646.

In the main site of web console we may see the summery of existing jobs. If everything goes fine field status is equal to RUNNING and bar Summary is green.

nomad-1

We can display the details of every job in the list. The next screen shows the history of the job, reserved resources and number of running instances (tasks).

nomad-2

If you would like to check out the details related to the single task, you should navigate to Task Group details.

nomad-3

We may also display the details related to the client node.

nomad-4

To display the details of allocation select the row in the table. You would be redirected to the following site. You may check out there an IP address of the application instance.

nomad-5

Step 5. Testing a sample system

Assuming you have succesfully deployed the applications on Nomad you should see the following services registered in Consul.

nomad-6

Now, if you call one of two available instances of caller-service, you should see the following response. The address of callme-service instance has been succesfully fetched from Consul through Spring Cloud Consul Client.

nomad-7